Niazian Mohsen, Belzile François, Torkamaneh Davoud
Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada.
Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada.
Plants (Basel). 2022 Apr 12;11(8):1044. doi: 10.3390/plants11081044.
Sequence and expression data obtained by next-generation sequencing (NGS)-based forward genetics methods often allow the identification of candidate causal genes. To provide true experimental evidence of a gene's function, reverse genetics techniques are highly valuable. Site-directed mutagenesis through transfer DNA (T-DNA) delivery is an efficient reverse screen method in plant functional analysis. Precise modification of targeted crop genome sequences is possible through the stable and/or transient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) reagents. Currently, CRISPR/Cas9 is the most powerful reverse genetics approach for fast and precise functional analysis of candidate genes/mutations of interest. Rapid and large-scale analyses of CRISPR/Cas-induced mutagenesis is achievable through -mediated hairy root transformation. The combination of hairy root-CRISPR/Cas provides an extraordinary platform for rapid, precise, easy, and cost-effective "in root" functional analysis of genes of interest in legume plants, including soybean. Both hairy root transformation and CRISPR/Cas9 techniques have their own complexities and considerations. Here, we discuss recent advancements in soybean hairy root transformation and CRISPR/Cas9 techniques. We highlight the critical factors required to enhance mutation induction and hairy root transformation, including the new generation of reporter genes, methods of infection, accurate gRNA design strategies, Cas9 variants, gene regulatory elements of gRNAs and Cas9 nuclease cassettes and their configuration in the final binary vector to study genes involved in root-related traits in soybean.
通过基于下一代测序(NGS)的正向遗传学方法获得的序列和表达数据通常有助于鉴定候选因果基因。为了提供基因功能的真实实验证据,反向遗传学技术具有很高的价值。通过转移DNA(T-DNA)传递进行的定点诱变是植物功能分析中一种有效的反向筛选方法。通过稳定和/或瞬时传递成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白(CRISPR/Cas)试剂,可以对目标作物基因组序列进行精确修饰。目前,CRISPR/Cas9是对感兴趣的候选基因/突变进行快速精确功能分析的最强大的反向遗传学方法。通过发根介导的毛状根转化可以实现对CRISPR/Cas诱导诱变的快速大规模分析。毛状根-CRISPR/Cas的组合为豆类植物(包括大豆)中感兴趣基因的快速、精确、简便且经济高效的“根部”功能分析提供了一个非凡的平台。毛状根转化和CRISPR/Cas9技术都有其自身的复杂性和需要考虑的因素。在这里,我们讨论了大豆毛状根转化和CRISPR/Cas9技术的最新进展。我们强调了提高突变诱导和毛状根转化所需的关键因素,包括新一代报告基因、感染方法、准确的gRNA设计策略、Cas9变体、gRNA和Cas9核酸酶盒的基因调控元件及其在最终二元载体中的配置,以研究大豆中与根相关性状的基因。