Suppr超能文献

梯度匹配加速了生化网络的混合效应推断。

Gradient matching accelerates mixed-effects inference for biochemical networks.

作者信息

van Oppen Yulan B, Milias-Argeitis Andreas

机构信息

Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands.

出版信息

Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf154.

Abstract

MOTIVATION

Single-cell time series data often exhibit significant variability within an isogenic cell population. When modeling intracellular processes, it is therefore more appropriate to infer parameter distributions that reflect this variability, rather than fitting the population average to obtain a single point estimate. The Global Two-Stage (GTS) approach for nonlinear mixed-effects (NLME) models is a simple and modular method commonly used for this purpose. However, this method is computationally intensive due to its repeated use of nonconvex optimization and numerical integration of the underlying system.

RESULTS

We propose the Gradient Matching GTS (GMGTS) method as an efficient alternative to GTS. Gradient matching offers an integration-free approach to parameter estimation that is particularly powerful for systems that are linear in the unknown parameters, such as biochemical networks modeled by mass action kinetics. By incorporating gradient matching into the GTS framework, we expand its capabilities through uncertainty propagation calculations and an iterative estimation scheme for partially observed systems. Comparisons between GMGTS and GTS across various inference setups show that our method significantly reduces computational demands, facilitating the application of complex NLME models in systems biology.

AVAILABILITY AND IMPLEMENTATION

A Matlab implementation of GMGTS is provided at https://github.com/yulanvanoppen/GMGTS (DOI: http://doi.org/10.5281/zenodo.14884457).

摘要

动机

单细胞时间序列数据在同基因细胞群体中常常表现出显著的变异性。因此,在对细胞内过程进行建模时,推断反映这种变异性的参数分布比拟合群体平均值以获得单个点估计更为合适。用于非线性混合效应(NLME)模型的全局两阶段(GTS)方法是常用于此目的的一种简单且模块化的方法。然而,由于该方法反复使用非凸优化和基础系统的数值积分,计算量很大。

结果

我们提出梯度匹配GTS(GMGTS)方法作为GTS的一种有效替代方法。梯度匹配提供了一种无需积分的参数估计方法,对于未知参数呈线性的系统(如由质量作用动力学建模的生化网络)特别有效。通过将梯度匹配纳入GTS框架,我们通过不确定性传播计算和针对部分观测系统的迭代估计方案扩展了其功能。在各种推断设置下GMGTS和GTS的比较表明,我们的方法显著降低了计算需求,便于复杂的NLME模型在系统生物学中的应用。

可用性和实现方式

GMGTS的Matlab实现可在https://github.com/yulanvanoppen/GMGTS(DOI:http://doi.org/10.5281/zenodo.14884457)获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa29/12034378/ecb591a1cdb0/btaf154f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验