Schillings Claudia, Sunnåker Mikael, Stelling Jörg, Schwab Christoph
Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland.
Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
PLoS Comput Biol. 2015 Aug 28;11(8):e1004457. doi: 10.1371/journal.pcbi.1004457. eCollection 2015 Aug.
Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.
参数不确定性是系统生物学等领域系统分析中一个特别具有挑战性且相关的方面,在这些领域中,无论是用于推断还是评估预测不确定性,在参数空间中全局表征系统行为都至关重要。然而,当前基于局部近似或蒙特卡罗采样的方法在处理与复杂网络模型相关的高维参数空间时,效果并不理想。在此,我们提出一种基于稀疏多项式近似的确定性方法。我们提出一种确定性计算插值方案,该方案能自适应地识别最重要的展开系数。我们展示了它在具有数百个参数和状态变量的计算系统生物学动力学模型方程中的性能,从而在整个参数空间上得到参数解的数值近似。该方案基于在参数空间中经过明智且自适应选择的点上对参数解进行自适应斯莫利亚克插值。与蒙特卡罗采样一样,它是“非侵入性的”,非常适合大规模并行实现,但收敛速度更快。这为大规模动态网络分析开辟了新途径,能够扩展到许多应用,包括参数估计、不确定性量化和系统设计。