Suppr超能文献

利用离心法对软材料粘附性进行的高通量筛选试验

High-Throughput Screening Test for Adhesion in Soft Materials Using Centrifugation.

作者信息

Chen Yusu, Wang Qifeng, Mills Carolyn E, Kann Johanna G, Shull Kenneth R, Tullman-Ercek Danielle, Wang Muzhou

机构信息

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States.

Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States.

出版信息

ACS Cent Sci. 2021 Jul 28;7(7):1135-1143. doi: 10.1021/acscentsci.1c00414. Epub 2021 Jun 28.

Abstract

High-throughput screening of mechanical properties can transform materials science research by both aiding in materials discovery and developing predictive models. However, only a few such assays have been reported, requiring custom or expensive equipment, while the mounting demand for enormous data sets of materials properties for predictive models is unfulfilled by the current characterization throughput. We address this problem by developing a high-throughput colorimetric adhesion screening method using a common laboratory centrifuge, multiwell plates, and microparticles. The technique uses centrifugation to apply a homogeneous mechanical detachment force across individual formulations in a multiwell plate. We also develop a high-throughput sample deposition method to prepare films with uniform thickness in each well, minimizing well-to-well variability. After establishing excellent agreement with the well-known probe tack adhesion test, we demonstrate the consistency of our method by performing the test on a multiwell plate with two different formulations in an easily discernible pattern. The throughput is limited only by the number of wells in the plates, easily reaching 10 samples/run. With its simplicity, low cost, and large dynamic range, this high-throughput method has the potential to change the landscape of adhesive material characterization.

摘要

高通量机械性能筛选可以通过辅助材料发现和开发预测模型来变革材料科学研究。然而,目前仅报道了少数此类检测方法,这些方法需要定制或昂贵的设备,而预测模型对大量材料性能数据集的需求日益增长,当前的表征通量却无法满足这一需求。我们通过开发一种使用普通实验室离心机、多孔板和微粒的高通量比色法附着力筛选方法来解决这一问题。该技术利用离心作用在多孔板中的各个配方上施加均匀的机械剥离力。我们还开发了一种高通量样品沉积方法,以在每个孔中制备厚度均匀的薄膜,将孔间差异降至最低。在与著名的探针粘性附着力测试取得良好一致性后,我们通过在多孔板上以易于识别的模式对两种不同配方进行测试,证明了我们方法的一致性。通量仅受板中孔数量的限制,轻松可达10个样品/次运行。凭借其简单性、低成本和大动态范围,这种高通量方法有可能改变胶粘剂材料表征的局面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a48a/8323114/f5bd099ab8b4/oc1c00414_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验