Suppr超能文献

高通量筛选和机器学习探索纳米医学设计空间。

Exploration of the nanomedicine-design space with high-throughput screening and machine learning.

机构信息

Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.

International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.

出版信息

Nat Biomed Eng. 2019 Apr;3(4):318-327. doi: 10.1038/s41551-019-0351-1. Epub 2019 Feb 18.

Abstract

Only a tiny fraction of the nanomedicine-design space has been explored, owing to the structural complexity of nanomedicines and the lack of relevant high-throughput synthesis and analysis methods. Here, we report a methodology for determining structure-activity relationships and design rules for spherical nucleic acids (SNAs) functioning as cancer-vaccine candidates. First, we identified ~1,000 candidate SNAs on the basis of reasonable ranges for 11 design parameters that can be systematically and independently varied to optimize SNA performance. Second, we developed a high-throughput method for making SNAs at the picomolar scale in a 384-well format, and used a mass spectrometry assay to rapidly measure SNA immune activation. Third, we used machine learning to quantitatively model SNA immune activation and identify the minimum number of SNAs needed to capture optimum structure-activity relationships for a given SNA library. Our methodology is general, can reduce the number of nanoparticles that need to be tested by an order of magnitude, and could serve as a screening tool for the development of nanoparticle therapeutics.

摘要

由于纳米药物的结构复杂性以及缺乏相关的高通量合成和分析方法,目前仅探索了纳米医学设计空间的一小部分。在这里,我们报告了一种用于确定作为癌症疫苗候选物的球形核酸 (SNA) 的结构-活性关系和设计规则的方法。首先,我们根据可以系统且独立地改变以优化 SNA 性能的 11 个设计参数的合理范围,确定了~1000 个候选 SNA。其次,我们开发了一种在 384 孔格式中以皮摩尔级规模制备 SNA 的高通量方法,并使用质谱分析快速测量 SNA 免疫激活。第三,我们使用机器学习对 SNA 免疫激活进行定量建模,并确定给定 SNA 文库中捕获最佳结构-活性关系所需的最少 SNA 数量。我们的方法具有通用性,可以将需要测试的纳米颗粒数量减少一个数量级,并且可以作为纳米颗粒治疗药物开发的筛选工具。

相似文献

1
Exploration of the nanomedicine-design space with high-throughput screening and machine learning.
Nat Biomed Eng. 2019 Apr;3(4):318-327. doi: 10.1038/s41551-019-0351-1. Epub 2019 Feb 18.
2
Immunomodulatory spherical nucleic acids.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3892-7. doi: 10.1073/pnas.1502850112. Epub 2015 Mar 16.
4
Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems.
Trends Mol Med. 2019 Dec;25(12):1066-1079. doi: 10.1016/j.molmed.2019.08.012. Epub 2019 Nov 6.
5
In Vivo Behavior of Ultrasmall Spherical Nucleic Acids.
Small. 2023 Jun;19(24):e2300097. doi: 10.1002/smll.202300097. Epub 2023 Mar 11.
6
Intracellular fate of spherical nucleic acid nanoparticle conjugates.
J Am Chem Soc. 2014 May 28;136(21):7726-33. doi: 10.1021/ja503010a. Epub 2014 May 19.
7
Sequence Multiplicity within Spherical Nucleic Acids.
ACS Nano. 2020 Jan 28;14(1):1084-1092. doi: 10.1021/acsnano.9b08750. Epub 2020 Jan 9.
8
Tumor-Associated Enzyme-Activatable Spherical Nucleic Acids.
ACS Nano. 2022 Jul 26;16(7):10931-10942. doi: 10.1021/acsnano.2c03323. Epub 2022 Jul 18.
10
Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside.
Cancers (Basel). 2022 Mar 23;14(7):1615. doi: 10.3390/cancers14071615.

引用本文的文献

1
Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy.
Pharmaceutics. 2025 Aug 10;17(8):1037. doi: 10.3390/pharmaceutics17081037.
2
The emerging era of structural nanomedicine.
Nat Rev Bioeng. 2025 Jul;3(7):526-528. doi: 10.1038/s44222-025-00306-5. Epub 2025 Apr 25.
3
Eliciting antitumor immunity via therapeutic cancer vaccines.
Cell Mol Immunol. 2025 Jul 9. doi: 10.1038/s41423-025-01316-4.
4
Machine Learning-Enhanced Nanoparticle Design for Precision Cancer Drug Delivery.
Adv Sci (Weinh). 2025 Aug;12(30):e03138. doi: 10.1002/advs.202503138. Epub 2025 Jun 19.
5
Blueprints for Better Drugs: The Structural Revolution in Nanomedicine.
ACS Nano. 2025 May 27;19(20):18889-18901. doi: 10.1021/acsnano.5c06380. Epub 2025 May 13.
7
Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.
Signal Transduct Target Ther. 2025 Mar 10;10(1):73. doi: 10.1038/s41392-024-02112-8.
8
10
Pioneering integration of combinatorial chemistry and machine learning to accelerate the development of tailored LNPs for mRNA delivery.
Acta Pharm Sin B. 2024 Nov;14(11):5079-5081. doi: 10.1016/j.apsb.2024.08.032. Epub 2024 Sep 2.

本文引用的文献

1
Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date.
Pharm Res. 2016 Oct;33(10):2373-87. doi: 10.1007/s11095-016-1958-5. Epub 2016 Jun 14.
2
Cellular Assays with a Molecular Endpoint Measured by SAMDI Mass Spectrometry.
Small. 2016 Jul;12(28):3811-8. doi: 10.1002/smll.201502940. Epub 2016 May 30.
3
Immunomodulatory spherical nucleic acids.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3892-7. doi: 10.1073/pnas.1502850112. Epub 2015 Mar 16.
4
Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators.
J Exp Med. 2015 Feb 9;212(2):129-37. doi: 10.1084/jem.20140391. Epub 2015 Feb 2.
5
Liposomal spherical nucleic acids.
J Am Chem Soc. 2014 Jul 16;136(28):9866-9. doi: 10.1021/ja504845f. Epub 2014 Jul 1.
6
Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7625-30. doi: 10.1073/pnas.1305804110. Epub 2013 Apr 23.
7
Spherical nucleic acids.
J Am Chem Soc. 2012 Jan 25;134(3):1376-91. doi: 10.1021/ja209351u. Epub 2012 Jan 9.
8
Selective enhancement of nucleases by polyvalent DNA-functionalized gold nanoparticles.
J Am Chem Soc. 2011 Feb 23;133(7):2120-3. doi: 10.1021/ja110833r. Epub 2011 Jan 26.
10
Polyvalent DNA nanoparticle conjugates stabilize nucleic acids.
Nano Lett. 2009 Jan;9(1):308-11. doi: 10.1021/nl802958f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验