Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
Nat Biomed Eng. 2019 Apr;3(4):318-327. doi: 10.1038/s41551-019-0351-1. Epub 2019 Feb 18.
Only a tiny fraction of the nanomedicine-design space has been explored, owing to the structural complexity of nanomedicines and the lack of relevant high-throughput synthesis and analysis methods. Here, we report a methodology for determining structure-activity relationships and design rules for spherical nucleic acids (SNAs) functioning as cancer-vaccine candidates. First, we identified ~1,000 candidate SNAs on the basis of reasonable ranges for 11 design parameters that can be systematically and independently varied to optimize SNA performance. Second, we developed a high-throughput method for making SNAs at the picomolar scale in a 384-well format, and used a mass spectrometry assay to rapidly measure SNA immune activation. Third, we used machine learning to quantitatively model SNA immune activation and identify the minimum number of SNAs needed to capture optimum structure-activity relationships for a given SNA library. Our methodology is general, can reduce the number of nanoparticles that need to be tested by an order of magnitude, and could serve as a screening tool for the development of nanoparticle therapeutics.
由于纳米药物的结构复杂性以及缺乏相关的高通量合成和分析方法,目前仅探索了纳米医学设计空间的一小部分。在这里,我们报告了一种用于确定作为癌症疫苗候选物的球形核酸 (SNA) 的结构-活性关系和设计规则的方法。首先,我们根据可以系统且独立地改变以优化 SNA 性能的 11 个设计参数的合理范围,确定了~1000 个候选 SNA。其次,我们开发了一种在 384 孔格式中以皮摩尔级规模制备 SNA 的高通量方法,并使用质谱分析快速测量 SNA 免疫激活。第三,我们使用机器学习对 SNA 免疫激活进行定量建模,并确定给定 SNA 文库中捕获最佳结构-活性关系所需的最少 SNA 数量。我们的方法具有通用性,可以将需要测试的纳米颗粒数量减少一个数量级,并且可以作为纳米颗粒治疗药物开发的筛选工具。