Suppr超能文献

推特上的 COVID-19 疫苗言论:说服技巧、情绪和错误/虚假信息的内容分析。

COVID-19 Vaccine Discourse on Twitter: A Content Analysis of Persuasion Techniques, Sentiment and Mis/Disinformation.

机构信息

Health Innovation Center, The MITRE Corporation, McLean, Virginia, USA.

出版信息

J Health Commun. 2021 Jul 3;26(7):443-459. doi: 10.1080/10810730.2021.1955050. Epub 2021 Aug 4.

Abstract

This research aims to understand the persuasion techniques used in Twitter posts about COVID-19 vaccines by the different vaccine sentiments (i.e., Pro-Vaccine, Anti-Vaccine, and Neutral) using the Elaboration Likelihood Model, Social judgment Theory, and the Extended Parallel Process Model as theoretical frameworks. A content analysis was conducted on a data set of 1,000 Twitter posts. The corpus of Tweets was examined using the persuasion frameworks; tweets that were identified as emanating from bots were further examined. Results found Anti-Vaccine messages predominantly used Anecdotal stories, Humor/Sarcasm, and Celebrity figures as persuasion techniques, while Pro-Vaccine messages primarily used Information, Celebrity figures, and Participation. Results also showed the Anti-Vaccine messages primarily focused on values related to the categories of Safety, Political/Conspiracy Theories, and Choice. Finally, results revealed Anti-Vaccine messages primarily used Perceived Severity and Perceived Susceptibility, which are fear appeal elements. The findings for messages by bots were comparable to the messages in the larger corpus of tweets. Based on the findings, a response framework-Health Information Persuasion Exploration (HIPE)-is proposed to address mis/disinformation and Anti-Vaccine messaging. The results of this study and the HIPE framework can inform a national COVID-19 vaccine health campaign to increase vaccine adoption.

摘要

本研究旨在使用详尽可能性模型、社会判断理论和扩展平行过程模型作为理论框架,了解具有不同疫苗态度(即支持疫苗、反对疫苗和中立)的 Twitter 帖子中关于 COVID-19 疫苗的说服技巧。对 1000 条 Twitter 帖子的数据集进行了内容分析。使用说服框架检查了推文语料库;进一步检查了被确定为源自机器人的推文。研究结果发现,反疫苗信息主要使用轶事故事、幽默/讽刺和名人作为说服技巧,而支持疫苗的信息主要使用信息、名人以及参与度。结果还表明,反疫苗信息主要侧重于与安全、政治/阴谋论和选择相关类别的价值观。最后,研究结果表明,反疫苗信息主要使用感知严重性和感知易感性,这是恐惧诉求的要素。机器人消息的结果与更大的推文语料库中的消息相似。基于这些发现,提出了一个应对框架——健康信息说服探索(HIPE)——以解决错误/虚假信息和反疫苗信息。本研究的结果和 HIPE 框架可以为全国 COVID-19 疫苗健康运动提供信息,以提高疫苗接种率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验