Ghent University.
J Cogn Neurosci. 2021 Oct 1;33(11):2394-2412. doi: 10.1162/jocn_a_01766.
Cognitive control can be adaptive along several dimensions, including intensity (how intensely do control signals influence bottom-up processing) and selectivity (what information is selected for further processing). Furthermore, control can be exerted along slow or fast time scales. Whereas control on a slow time scale is used to proactively prepare for upcoming challenges, control can also be used on a faster time scale to react to unexpected events that require control. Importantly, a systematic comparison of these dimensions and time scales remains lacking. Moreover, most current models of adaptive control allow predictions only at a behavioral, not neurophysiological, level, thus seriously reducing the range of available empirical restrictions for informing model formulation. The current article addresses this issue by implementing a control loop in an earlier model of neural synchrony. The resulting model is tested on a Stroop task. We observe that only the model that exerts cognitive control on intensity and selectivity dimensions, as well as on two time scales, can account for relevant behavioral and neurophysiological data. Our findings hold important implications for both cognitive control and how computational models can be empirically constrained.
认知控制可以沿着几个维度进行自适应,包括强度(控制信号对底向上处理的影响程度有多强烈)和选择性(选择哪些信息进行进一步处理)。此外,控制可以在缓慢或快速的时间尺度上进行。虽然在慢时间尺度上的控制用于主动为即将到来的挑战做准备,但控制也可以在更快的时间尺度上用于应对需要控制的意外事件。重要的是,这些维度和时间尺度的系统比较仍然缺乏。此外,大多数自适应控制的当前模型仅允许在行为层面而不是神经生理层面进行预测,从而严重减少了可用于为模型制定提供信息的经验限制的范围。本文通过在早期的神经同步模型中实现控制回路来解决这个问题。所得模型在 Stroop 任务上进行了测试。我们观察到,只有在强度和选择性维度以及两个时间尺度上施加认知控制的模型才能解释相关的行为和神经生理数据。我们的研究结果对认知控制以及计算模型如何受到经验限制都具有重要意义。