Suppr超能文献

结构化种群中的抽吸动态表现得如同在充分混合的种群中一样。

Aspiration dynamics in structured population acts as if in a well-mixed one.

作者信息

Du Jinming, Wu Bin, Wang Long

机构信息

Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.

Department of Evolutionary Theory, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Straβe 2, 24306 Plön, Germany.

出版信息

Sci Rep. 2015 Jan 26;5:8014. doi: 10.1038/srep08014.

Abstract

Understanding the evolution of human interactive behaviors is important. Recent experimental results suggest that human cooperation in spatial structured population is not enhanced as predicted in previous works, when payoff-dependent imitation updating rules are used. This constraint opens up an avenue to shed light on how humans update their strategies in real life. Studies via simulations show that, instead of comparison rules, self-evaluation driven updating rules may explain why spatial structure does not alter the evolutionary outcome. Though inspiring, there is a lack of theoretical result to show the existence of such evolutionary updating rule. Here we study the aspiration dynamics, and show that it does not alter the evolutionary outcome in various population structures. Under weak selection, by analytical approximation, we find that the favored strategy in regular graphs is invariant. Further, we show that this is because the criterion under which a strategy is favored is the same as that of a well-mixed population. By simulation, we show that this holds for random networks. Although how humans update their strategies is an open question to be studied, our results provide a theoretical foundation of the updating rules that may capture the real human updating rules.

摘要

理解人类互动行为的演变至关重要。最近的实验结果表明,当使用依赖收益的模仿更新规则时,空间结构化群体中的人类合作并未如先前研究预测的那样得到增强。这一限制为揭示人类在现实生活中如何更新策略开辟了一条途径。通过模拟研究表明,与比较规则不同,自我评估驱动的更新规则或许可以解释为何空间结构不会改变进化结果。尽管颇具启发性,但缺乏理论结果来证明这种进化更新规则的存在。在此我们研究了抱负动态,并表明它在各种群体结构中都不会改变进化结果。在弱选择条件下,通过解析近似,我们发现规则图中受青睐的策略是不变的。此外,我们表明这是因为一种策略受青睐的标准与完全混合群体的标准相同。通过模拟,我们表明这在随机网络中也成立。尽管人类如何更新策略仍是一个有待研究的开放性问题,但我们的结果为可能捕捉真实人类更新规则的更新规则提供了理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fda/4306144/7de6f8aa550d/srep08014-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验