Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA.
J Am Med Inform Assoc. 2021 Sep 18;28(10):2258-2264. doi: 10.1093/jamia/ocab159.
Using a risk stratification model to guide clinical practice often requires the choice of a cutoff-called the decision threshold-on the model's output to trigger a subsequent action such as an electronic alert. Choosing this cutoff is not always straightforward. We propose a flexible approach that leverages the collective information in treatment decisions made in real life to learn reference decision thresholds from physician practice. Using the example of prescribing a statin for primary prevention of cardiovascular disease based on 10-year risk calculated by the 2013 pooled cohort equations, we demonstrate the feasibility of using real-world data to learn the implicit decision threshold that reflects existing physician behavior. Learning a decision threshold in this manner allows for evaluation of a proposed operating point against the threshold reflective of the community standard of care. Furthermore, this approach can be used to monitor and audit model-guided clinical decision making following model deployment.
使用风险分层模型来指导临床实践通常需要在模型输出上选择一个临界点,称为决策阈值,以触发后续行动,如电子警报。选择这个临界点并不总是那么简单。我们提出了一种灵活的方法,利用实际治疗决策中的集体信息,从医生的实践中学习参考决策阈值。以根据 2013 年 pooled cohort equations 计算的 10 年风险为基础,为心血管疾病一级预防开他汀类药物为例,我们展示了使用真实世界数据学习反映现有医生行为的隐含决策阈值的可行性。以这种方式学习决策阈值可以评估与反映社区护理标准的阈值相对应的建议操作点。此外,这种方法可以用于在模型部署后监测和审核模型指导的临床决策。