Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States.
ACS Synth Biol. 2021 Aug 20;10(8):2015-2029. doi: 10.1021/acssynbio.1c00182. Epub 2021 Aug 5.
Microbial co-culture fermentations can improve chemical production from complex biosynthetic pathways over monocultures by distributing enzymes across multiple strains, thereby reducing metabolic burden, overcoming endogenous regulatory mechanisms, or exploiting natural traits of different microbial species. However, stabilizing and optimizing microbial subpopulations for maximal chemical production remains a major obstacle in the field. In this study, we demonstrate that optogenetics is an effective strategy to dynamically control populations in microbial co-cultures. Using a new optogenetic circuit we call OptoTA, we regulate an endogenous toxin-antitoxin system, enabling tunability of growth using only blue light. With this system we can control the population composition of co-cultures of and . When introducing in each strain different metabolic modules of biosynthetic pathways for isobutyl acetate or naringenin, we found that the productivity of co-cultures increases by adjusting the population ratios with specific light duty cycles. This study shows the feasibility of using optogenetics to control microbial consortia populations and the advantages of using light to control their chemical production.
微生物共培养发酵可以通过在多个菌株中分布酶来提高复杂生物合成途径的化学产量,从而减轻代谢负担、克服内源性调节机制或利用不同微生物物种的自然特性。然而,稳定和优化微生物亚群以实现最大的化学产量仍然是该领域的主要障碍。在这项研究中,我们证明了光遗传学是一种有效控制微生物共培养物中群体的策略。我们使用一种称为 OptoTA 的新型光遗传学回路来调节内源性毒素-抗毒素系统,仅使用蓝光即可实现生长的可调性。使用该系统,我们可以控制 和 的共培养物的种群组成。当在每个菌株中引入用于异丁酸酯或柚皮素的生物合成途径的不同代谢模块时,我们发现通过调整具有特定光占空比的种群比例,共培养物的生产力会增加。这项研究表明了使用光遗传学控制微生物群落种群的可行性,以及使用光控制其化学产量的优势。