Suppr超能文献

有偏的方向表示可以用非均匀训练集统计数据的经验来解释。

Biased orientation representations can be explained by experience with nonuniform training set statistics.

机构信息

Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.

Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

J Vis. 2021 Aug 2;21(8):10. doi: 10.1167/jov.21.8.10.

Abstract

Visual acuity is better for vertical and horizontal compared to other orientations. This cross-species phenomenon is often explained by "efficient coding," whereby more neurons show sharper tuning for the orientations most common in natural vision. However, it is unclear if experience alone can account for such biases. Here, we measured orientation representations in a convolutional neural network, VGG-16, trained on modified versions of ImageNet (rotated by 0°, 22.5°, or 45° counterclockwise of upright). Discriminability for each model was highest near the orientations that were most common in the network's training set. Furthermore, there was an overrepresentation of narrowly tuned units selective for the most common orientations. These effects emerged in middle layers and increased with depth in the network, though this layer-wise pattern may depend on properties of the evaluation stimuli used. Biases emerged early in training, consistent with the possibility that nonuniform representations may play a functional role in the network's task performance. Together, our results suggest that biased orientation representations can emerge through experience with a nonuniform distribution of orientations, supporting the efficient coding hypothesis.

摘要

与其他方向相比,垂直和水平方向的视力更好。这种跨物种的现象通常可以用“有效编码”来解释,即更多的神经元对自然视觉中最常见的方向表现出更明显的调谐。然而,尚不清楚仅仅通过经验是否可以解释这种偏见。在这里,我们在经过修改的 ImageNet 版本(逆时针旋转 0°、22.5°或 45°)上对卷积神经网络 VGG-16 进行了训练,测量了其在各个方向上的表示。每个模型的可辨别性在最接近网络训练集中最常见的方向时最高。此外,还有选择性地针对最常见方向的窄调单元的过表示。这些影响出现在中间层,并随着网络的深度增加而增加,但这种分层模式可能取决于所使用的评估刺激的特性。在训练早期就出现了偏见,这与非均匀表示可能在网络的任务性能中发挥功能作用的可能性一致。总的来说,我们的结果表明,有偏见的方向表示可以通过具有非均匀方向分布的经验而出现,支持有效编码假说。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b0e/8354037/8ecb77624536/jovi-21-8-10-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验