Suppr超能文献

在非增强 CT 图像上鉴别尿路结石和血管钙化:使用计算机辅助诊断的初步经验。

Differentiation of urinary stone and vascular calcifications on non-contrast CT images: an initial experience using computer aided diagnosis.

机构信息

Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.

出版信息

J Digit Imaging. 2010 Jun;23(3):268-76. doi: 10.1007/s10278-009-9181-0. Epub 2009 Feb 4.

Abstract

The purpose of this study was to develop methods for the differentiation of urinary stones and vascular calcifications using computer-aided diagnosis (CAD) of non-contrast computed tomography (CT) images. From May 2003 to February 2004, 56 patients that underwent a pre-contrast CT examination and subsequently diagnosed as ureter stones were included in the study. Fifty-nine ureter stones and 53 vascular calcifications on pre-contrast CT images of the patients were evaluated. The shapes of the lesions including disperseness, convex hull depth, and lobulation count were analyzed for patients with ureter stones and vascular calcifications. In addition, the internal textures including edge density, skewness, difference histogram variation (DHV), and the gray-level co-occurrence matrix moment were also evaluated for the patients. For evaluation of the diagnostic accuracy of the shape and texture features, an artificial neural network (ANN) and receiver operating characteristics curve (ROC) analyses were performed. Of the several shape factors, disperseness showed a statistical difference between ureter stones and vascular calcifications (p < 0.05). For the internal texture features, skewness and DHV showed statistical differences between ureter stones and vascular calcifications (p < 0.05). The performance of the ANN was evaluated by examining the area under the ROC curves (AUC, A (z)). The A (z) value was 0.85 for the shape parameters and 0.88 for the texture parameters. In this study, several parameters regarding shape and internal texture were statistically different between ureter stones and vascular calcifications. The use of CAD would make it possible to differentiate ureter stones from vascular calcifications by a comparison of these parameters.

摘要

本研究旨在开发一种基于非对比 CT 图像的计算机辅助诊断(CAD)方法,用于鉴别尿路结石和血管钙化。2003 年 5 月至 2004 年 2 月,我们对 56 例行 CT 平扫并随后诊断为输尿管结石的患者进行了研究。在这些患者的 CT 平扫图像上,共评估了 59 个输尿管结石和 53 个血管钙化。分析了结石的形态参数(包括分散度、凸壳深度和分叶计数)和内部纹理参数(包括边缘密度、偏度、差异直方图变化和灰度共生矩阵矩)。应用人工神经网络(ANN)和受试者工作特征曲线(ROC)分析对形态和纹理特征的诊断准确性进行评价。在形态参数中,分散度在输尿管结石和血管钙化之间有统计学差异(p<0.05)。在内部纹理参数中,偏度和 DHV 在输尿管结石和血管钙化之间有统计学差异(p<0.05)。ROC 曲线下面积(AUC,A(z))用于评价 ANN 的性能。形态参数的 A(z)值为 0.85,纹理参数的 A(z)值为 0.88。本研究结果表明,输尿管结石和血管钙化的形态和内部纹理参数有统计学差异。通过比较这些参数,CAD 有助于鉴别输尿管结石和血管钙化。

相似文献

2
Uric acid versus non-uric acid urinary stones: differentiation with single energy CT texture analysis.
Clin Radiol. 2018 Sep;73(9):792-799. doi: 10.1016/j.crad.2018.04.010. Epub 2018 May 21.
5
Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks.
Comput Biol Med. 2018 Jun 1;97:153-160. doi: 10.1016/j.compbiomed.2018.04.021. Epub 2018 Apr 27.
8
Quarter regular dose non-enhanced CT for urinary stone: added value of adaptive statistical iterative reconstruction.
Acta Radiol. 2014 Nov;55(9):1137-44. doi: 10.1177/0284185113513761. Epub 2013 Nov 20.

引用本文的文献

1
Application of Radiomics Model of CT Images in the Identification of Ureteral Calculus and Phlebolith.
Int J Clin Pract. 2022 Nov 14;2022:5478908. doi: 10.1155/2022/5478908. eCollection 2022.
2
A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans.
Med Phys. 2022 Apr;49(4):2545-2554. doi: 10.1002/mp.15518. Epub 2022 Feb 22.
3
Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network.
Urolithiasis. 2021 Feb;49(1):41-49. doi: 10.1007/s00240-020-01180-z. Epub 2020 Feb 27.

本文引用的文献

2
Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT.
Acad Radiol. 2007 Dec;14(12):1441-7. doi: 10.1016/j.acra.2007.09.016.
4
Computer-aided diagnosis of localized ground-glass opacity in the lung at CT: initial experience.
Radiology. 2005 Nov;237(2):657-61. doi: 10.1148/radiol.2372041461. Epub 2005 Sep 28.
6
Classification of breast ultrasound images using fractal feature.
Clin Imaging. 2005 Jul-Aug;29(4):235-45. doi: 10.1016/j.clinimag.2004.11.024.
7
Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors.
Breast Cancer Res Treat. 2005 Jan;89(2):179-85. doi: 10.1007/s10549-004-2043-z.
8
Computerized scheme for assessing ultrasonographic features of breast masses.
Acad Radiol. 2005 Jan;12(1):58-66. doi: 10.1016/j.acra.2004.11.010.
9
Characterization of spiculation on ultrasound lesions.
IEEE Trans Med Imaging. 2004 Jan;23(1):111-21. doi: 10.1109/TMI.2003.819918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验