Suppr超能文献

用于计算机辅助诊断(CAD)训练中数据增强的无缝病变插入

Seamless Lesion Insertion for Data Augmentation in CAD Training.

作者信息

Pezeshk Aria, Petrick Nicholas, Sahiner Berkman

出版信息

IEEE Trans Med Imaging. 2017 Apr;36(4):1005-1015. doi: 10.1109/TMI.2016.2640180. Epub 2016 Dec 14.

Abstract

The performance of a classifier is largely dependent on the size and representativeness of data used for its training. In circumstances where accumulation and/or labeling of training samples is difficult or expensive, such as medical applications, data augmentation can potentially be used to alleviate the limitations of small datasets. We have previously developed an image blending tool that allows users to modify or supplement an existing CT or mammography dataset by seamlessly inserting a lesion extracted from a source image into a target image. This tool also provides the option to apply various types of transformations to different properties of the lesion prior to its insertion into a new location. In this study, we used this tool to create synthetic samples that appear realistic in chest CT. We then augmented different size training sets with these artificial samples, and investigated the effect of the augmentation on training various classifiers for the detection of lung nodules. Our results indicate that the proposed lesion insertion method can improve classifier performance for small training datasets, and thereby help reduce the need to acquire and label actual patient data.

摘要

分类器的性能在很大程度上取决于用于其训练的数据的大小和代表性。在积累和/或标记训练样本困难或昂贵的情况下,如医学应用中,数据增强可潜在地用于缓解小数据集的局限性。我们之前开发了一种图像融合工具,该工具允许用户通过将从源图像中提取的病变无缝插入目标图像来修改或补充现有的CT或乳腺X线摄影数据集。此工具还提供了在将病变插入新位置之前对其不同属性应用各种类型变换的选项。在本研究中,我们使用此工具创建在胸部CT中看起来逼真的合成样本。然后,我们用这些人工样本扩充不同大小的训练集,并研究扩充对训练各种用于检测肺结节的分类器的影响。我们的结果表明,所提出的病变插入方法可以提高小训练数据集的分类器性能,从而有助于减少获取和标记实际患者数据的需求。

相似文献

1
Seamless Lesion Insertion for Data Augmentation in CAD Training.
IEEE Trans Med Imaging. 2017 Apr;36(4):1005-1015. doi: 10.1109/TMI.2016.2640180. Epub 2016 Dec 14.
2
Seamless Insertion of Pulmonary Nodules in Chest CT Images.
IEEE Trans Biomed Eng. 2015 Dec;62(12):2812-2827. doi: 10.1109/TBME.2015.2445054. Epub 2015 Jun 12.
3
A simplified cluster model and a tool adapted for collaborative labeling of lung cancer CT scans.
Comput Methods Programs Biomed. 2021 Jul;206:106111. doi: 10.1016/j.cmpb.2021.106111. Epub 2021 Apr 18.
4
Computer-aided detection; the effect of training databases on detection of subtle breast masses.
Acad Radiol. 2010 Nov;17(11):1401-8. doi: 10.1016/j.acra.2010.06.009. Epub 2010 Jul 22.
5
Validation of lesion simulations in clinical CT data for anonymized chest and abdominal CT databases.
Med Phys. 2019 Apr;46(4):1931-1937. doi: 10.1002/mp.13412. Epub 2019 Feb 19.
6
A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.
Med Image Anal. 2010 Jun;14(3):390-406. doi: 10.1016/j.media.2010.02.004. Epub 2010 Feb 19.
8
Detection of pulmonary nodules in chest radiographs: novel cost function for effective network training with purely synthesized datasets.
Int J Comput Assist Radiol Surg. 2024 Oct;19(10):1991-2000. doi: 10.1007/s11548-024-03227-7. Epub 2024 Jul 13.

引用本文的文献

2
Automated Detection of COVID-19 from Multimodal Imaging Data Using Optimized Convolutional Neural Network Model.
J Imaging Inform Med. 2024 Oct;37(5):2074-2088. doi: 10.1007/s10278-024-01077-y. Epub 2024 Mar 18.
3
Domain-guided data augmentation for deep learning on medical imaging.
PLoS One. 2023 Mar 23;18(3):e0282532. doi: 10.1371/journal.pone.0282532. eCollection 2023.
4
A holistic overview of deep learning approach in medical imaging.
Multimed Syst. 2022;28(3):881-914. doi: 10.1007/s00530-021-00884-5. Epub 2022 Jan 21.
6
Multiple Lesions Insertion: boosting diabetic retinopathy screening through Poisson editing.
Biomed Opt Express. 2021 Apr 16;12(5):2773-2789. doi: 10.1364/BOE.420776. eCollection 2021 May 1.
7
A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections.
Int J Comput Assist Radiol Surg. 2021 Oct;16(10):1653-1661. doi: 10.1007/s11548-021-02420-2. Epub 2021 Jun 13.
8
Improving the Subtype Classification of Non-small Cell Lung Cancer by Elastic Deformation Based Machine Learning.
J Digit Imaging. 2021 Jun;34(3):605-617. doi: 10.1007/s10278-021-00455-0. Epub 2021 May 7.
9
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
10
Deep Learning in Medical Image Analysis.
Adv Exp Med Biol. 2020;1213:3-21. doi: 10.1007/978-3-030-33128-3_1.

本文引用的文献

1
AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images.
IEEE Trans Med Imaging. 2016 May;35(5):1313-21. doi: 10.1109/TMI.2016.2528120. Epub 2016 Feb 11.
2
Seamless Insertion of Pulmonary Nodules in Chest CT Images.
IEEE Trans Biomed Eng. 2015 Dec;62(12):2812-2827. doi: 10.1109/TBME.2015.2445054. Epub 2015 Jun 12.
3
Simulation and assessment of realistic breast lesions using fractal growth models.
Phys Med Biol. 2013 Aug 21;58(16):5613-27. doi: 10.1088/0031-9155/58/16/5613. Epub 2013 Jul 29.
5
Small-sample precision of ROC-related estimates.
Bioinformatics. 2010 Mar 15;26(6):822-30. doi: 10.1093/bioinformatics/btq037. Epub 2010 Feb 3.
6
Three-dimensional simulation of lung nodules for paediatric multidetector array CT.
Br J Radiol. 2009 May;82(977):401-11. doi: 10.1259/bjr/51749983. Epub 2009 Jan 19.
7
Exploratory undersampling for class-imbalance learning.
IEEE Trans Syst Man Cybern B Cybern. 2009 Apr;39(2):539-50. doi: 10.1109/TSMCB.2008.2007853. Epub 2008 Dec 16.
9
Insertion of virtual pulmonary nodules in CT data of the chest: development of a software tool.
Eur Radiol. 2006 Nov;16(11):2567-74. doi: 10.1007/s00330-006-0254-x. Epub 2006 Jul 4.
10
Simulation of mammographic lesions.
Acad Radiol. 2006 Jul;13(7):860-70. doi: 10.1016/j.acra.2006.03.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验