Chongqing University of Posts and Telecommunications, School of Computer Science and Technology, Chongqing, China.
Chongqing Geomatics and Remote Sensing Center, Chongqing, China.
Comput Intell Neurosci. 2021 Jul 26;2021:7367870. doi: 10.1155/2021/7367870. eCollection 2021.
The growing interest in deep learning approaches to video surveillance raises concerns about the accuracy and efficiency of neural networks. However, fast and reliable detection of abnormal events is still a challenging work. Here, we introduce a two-stream approach that offers an autoencoder-based structure for fast and efficient detection to facilitate anomaly detection from surveillance video without labeled abnormal events. Furthermore, we present post hoc interpretability of feature map visualization to show the process of feature learning, revealing uncertain and ambiguous decision boundaries in the video sequence. Experimental results on Avenue, UCSD Ped2, and Subway datasets show that our method can detect abnormal events well and explain the internal logic of the model at the object level.
深度学习方法在视频监控中的应用日益受到关注,这引发了人们对神经网络的准确性和效率的担忧。然而,快速可靠地检测异常事件仍然是一项具有挑战性的工作。在这里,我们引入了一种双流方法,该方法提供了一种基于自动编码器的结构,用于快速高效的检测,以促进从监控视频中进行异常检测,而无需标记异常事件。此外,我们还提出了特征图可视化的事后可解释性,以展示特征学习的过程,揭示视频序列中不确定和模糊的决策边界。在 Avenue、UCSD Ped2 和 Subway 数据集上的实验结果表明,我们的方法可以很好地检测异常事件,并在对象级别上解释模型的内部逻辑。