Department of Computer Engineering, Dongseo University, Busan 47011, Korea.
Buzzni AI Lab, Seoul 08788, Korea.
Sensors (Basel). 2021 Oct 8;21(19):6679. doi: 10.3390/s21196679.
Anomaly detection is one of the crucial tasks in daily infrastructure operations as it can prevent massive damage to devices or resources, which may then lead to catastrophic outcomes. To address this challenge, we propose an automated solution to detect anomaly pattern(s) of the water levels and report the analysis and time/point(s) of abnormality. This research's motivation is the level difficulty and time-consuming managing facilities responsible for controlling water levels due to the rare occurrence of abnormal patterns. Consequently, we employed deep autoencoder, one of the types of artificial neural network architectures, to learn different patterns from the given sequences of data points and reconstruct them. Then we use the reconstructed patterns from the deep autoencoder together with a threshold to report which patterns are abnormal from the normal ones. We used a stream of time-series data collected from sensors to train the model and then evaluate it, ready for deployment as the anomaly detection system framework. We run extensive experiments on sensor data from water tanks. Our analysis shows why we conclude vanilla deep autoencoder as the most effective solution in this scenario.
异常检测是日常基础设施运营中的关键任务之一,因为它可以防止设备或资源的大规模损坏,从而避免灾难性的后果。为了解决这个挑战,我们提出了一种自动化的解决方案,用于检测水位的异常模式,并报告分析结果以及异常出现的时间/点。本研究的动机是由于异常模式很少发生,因此负责控制水位的设施管理具有难度并且非常耗时。因此,我们使用了深度自动编码器,这是一种人工神经网络架构类型,从给定的数据点序列中学习不同的模式并对其进行重建。然后,我们使用深度自动编码器重建的模式和一个阈值来报告哪些模式是异常的,哪些是正常的。我们使用从传感器收集的时间序列数据流来训练模型,然后对其进行评估,准备作为异常检测系统框架进行部署。我们在水箱的传感器数据上进行了广泛的实验。我们的分析表明了为什么我们认为香草深度自动编码器是这种情况下最有效的解决方案。