Markevich Alexander, Hudak Bethany M, Madsen Jacob, Song Jiaming, Snijders Paul C, Lupini Andrew R, Susi Toma
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
Naval Research Laboratory, Material Sciences and Technology, 4555 Overlook Ave SW, Washington, District of Columbia 20375, United States.
J Phys Chem C Nanomater Interfaces. 2021 Jul 29;125(29):16041-16048. doi: 10.1021/acs.jpcc.1c03549. Epub 2021 Jul 19.
The precise positioning of dopant atoms within bulk crystal lattices could enable novel applications in areas including solid-state sensing and quantum computation. Established scanning probe techniques are capable tools for the manipulation of surface atoms, but at a disadvantage due to their need to bring a physical tip into contact with the sample. This has prompted interest in electron-beam techniques, followed by the first proof-of-principle experiment of bismuth dopant manipulation in crystalline silicon. Here, we use first-principles modeling to discover a novel indirect exchange mechanism that allows electron impacts to non-destructively move dopants with atomic precision within the silicon lattice. However, this mechanism only works for the two heaviest group V donors with split-vacancy configurations, Bi and Sb. We verify our model by directly imaging these configurations for Bi and by demonstrating that the promising nuclear spin qubit Sb can be manipulated using a focused electron beam.
掺杂原子在体晶格中的精确定位能够在包括固态传感和量子计算等领域实现新的应用。现有的扫描探针技术是操纵表面原子的有效工具,但由于需要将物理探针与样品接触而存在劣势。这引发了人们对电子束技术的兴趣,随后进行了晶体硅中铋掺杂操纵的首个原理验证实验。在此,我们使用第一性原理建模发现了一种新颖的间接交换机制,该机制允许电子撞击以原子精度在硅晶格内无损移动掺杂剂。然而,这种机制仅适用于具有分裂空位构型的两种最重的第V族施主,即铋和锑。我们通过直接成像铋的这些构型并证明可以使用聚焦电子束操纵有前景的核自旋量子比特锑来验证我们的模型。