Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
ACS Nano. 2023 Apr 25;17(8):7241-7249. doi: 10.1021/acsnano.2c10122. Epub 2023 Apr 7.
Nitrogen-vacancy (NV) centers in nanodiamonds are a promising quantum communication system offering robust and discrete single photon emission, but a more thorough understanding of properties of the NV centers is critical for real world implementation in functional devices. The first step to understanding how factors such as surface, depth, and charge state affect NV center properties is to directly characterize these defects on the atomic scale. Here we use Angstrom-resolution scanning transmission electron microscopy (STEM) to identify a single NV center in a ∼4 nm natural nanodiamond through simultaneous acquisition of electron energy loss and energy dispersive X-ray spectra, which provide a characteristic NV center peak and a nitrogen peak, respectively. In addition, we identify NV centers in larger, ∼15 nm synthetic nanodiamonds, although without the single-defect resolution afforded by the lower background of the smaller natural nanodiamonds. We have further demonstrated the potential to directly position these technologically relevant defects at the atomic scale using the scanning electron beam to "herd" NV centers and nitrogen atoms across their host nanodiamonds.
氮空位(NV)中心在纳米金刚石中是一种很有前途的量子通信系统,具有强大而离散的单光子发射,但为了在功能器件中实际应用,更深入地了解 NV 中心的特性是至关重要的。了解表面、深度和电荷状态等因素如何影响 NV 中心特性的第一步是在原子尺度上直接对这些缺陷进行表征。在这里,我们使用埃分辨率扫描透射电子显微镜(STEM),通过同时获取电子能量损失和能量色散 X 射线谱,在一个约 4nm 的天然纳米金刚石中识别出一个单 NV 中心,分别提供了特征 NV 中心峰和氮峰。此外,我们还在更大的约 15nm 合成纳米金刚石中识别出 NV 中心,尽管其背景较低,无法达到较小天然纳米金刚石的单缺陷分辨率。我们还进一步证明了使用扫描电子束直接将这些技术相关的缺陷定位在原子尺度上的潜力,通过扫描电子束将 NV 中心和氮原子“驱赶”到它们的宿主纳米金刚石中。