Steinberger Abraham R, Merino William Oscar, Cahoon Rebecca E, Cahoon Edgar B, Lynch Daniel V
Department of Biology Williams College Williamstown MA USA.
Center for Plant Science Innovation and Department of Biochemistry University of Nebraska Lincoln NE USA.
Plant Direct. 2021 Jul 16;5(7):e336. doi: 10.1002/pld3.336. eCollection 2021 Jul.
Sphingolipids have roles as membrane structural components and as bioactive molecules in plants. In , 4-hydroxysphinganine (phytosphingosine, t18:0) is the predominant sphingolipid long-chain base (LCB). To assess the functional significance of t18:0, CRISPR-Cas9 mutagenesis was used to generate mutant lines lacking the sole () gene encoding the hydroxylase responsible for converting sphinganine (d18:0) to t18:0. Total sphingolipid content in protonemata was 2.4-fold higher than in wild-type. Modest changes in glycosyl inositolphosphorylceramide (GIPC) glycosylation patterns occurred. Sphingolipidomic analyses of mutants lacking t18:0 indicated modest alterations in acyl-chain pairing with d18:0 in GIPCs and ceramides, but dramatic alterations in acyl-chain pairing in glucosylceramides, in which 4,8-sphingadienine (d18:2) was the principal LCB. A striking accumulation of free and phosphorylated LCBs accompanied loss of the hydroxylase. The lines exhibited altered morphology, including smaller chloronemal cell size, irregular cell shape, reduced gametophore size, and increased pigmentation. In the presence of the synthetic trihydroxy LCB t17:0, the endogenous sphingolipid content of lines decreased to wild-type levels, and the mutants exhibited phenotypes more similar to wild-type plants. These results demonstrate the importance of sphingolipid content and composition to Physcomitrella growth. They also illuminate similarities in regulating sphingolipid content but differences in regulating sphingolipid species composition between the bryophyte and angiosperm .
鞘脂类在植物中作为膜结构成分和生物活性分子发挥作用。在[具体植物名称]中,4-羟基鞘氨醇(植物鞘氨醇,t18:0)是主要的鞘脂类长链碱(LCB)。为了评估t18:0的功能意义,利用CRISPR-Cas9诱变技术构建了缺失唯一[具体基因名称]基因的突变株系,该基因编码负责将鞘氨醇(d18:0)转化为t18:0的羟化酶。[具体植物名称]原丝体中的总鞘脂类含量比野生型高2.4倍。糖基肌醇磷酸神经酰胺(GIPC)糖基化模式发生了适度变化。对缺乏t18:0的突变体进行鞘脂组学分析表明,GIPC和神经酰胺中与d18:0的酰基链配对有适度改变,但葡糖神经酰胺中的酰基链配对有显著改变,其中4,8-鞘氨二烯(d18:2)是主要的LCB。游离和磷酸化LCB的显著积累伴随着羟化酶的缺失。[具体植物名称]株系表现出形态改变,包括较小的绿丝体细胞大小、不规则的细胞形状、减小的配子体大小和增加的色素沉着。在合成三羟基LCB t17:0存在的情况下,[具体植物名称]株系的内源性鞘脂类含量降至野生型水平,且突变体表现出与野生型植物更相似的表型。这些结果证明了鞘脂类含量和组成对小立碗藓生长的重要性。它们还揭示了苔藓植物[具体植物名称]和被子植物在调节鞘脂类含量方面的相似性,但在调节鞘脂类物种组成方面的差异。