Suppr超能文献

使用多任务弱监督注意力网络从脑部磁共振成像进行端到端痴呆状态预测

End-to-End Dementia Status Prediction from Brain MRI Using Multi-task Weakly-Supervised Attention Network.

作者信息

Lian Chunfeng, Liu Mingxia, Wang Li, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Med Image Comput Comput Assist Interv. 2019;11767:158-167. Epub 2019 Oct 10.

Abstract

Computer-aided prediction of dementia status (e.g., clinical scores of cognitive tests) from brain MRI is of great clinical value, as it can help assess pathological stage and predict disease progression. Existing learning-based approaches typically preselect dementia-sensitive regions from the whole-brain MRI for feature extraction and prediction model construction, which might be sub-optimal due to potential heterogeneities between different steps. Also, based on anatomical prior knowledge (e.g., brain atlas) and time-consuming nonlinear registration, these preselected brain regions are usually the same across all subjects, ignoring their in dementia progression. In this paper, we propose a multi-task weakly-supervised attention network (MWAN) to jointly predict multiple clinical scores from the baseline MRI data, by explicitly considering individual specificities of different subjects. Leveraging a fully-trainable dementia attention block, our MWAN method can automatically identify subject-specific discriminative locations from the whole-brain MRI for end-to-end feature learning and multi-task regression. We evaluated our MWAN method by cross-validation on two public datasets (i.e., ADNI-1 and ADNI-2). Experimental results demonstrate that the proposed method performs well in both the tasks of clinical score prediction and weakly-supervised discriminative localization in brain MR images.

摘要

利用脑部磁共振成像(MRI)进行痴呆状态(如认知测试的临床评分)的计算机辅助预测具有重要的临床价值,因为它有助于评估病理阶段并预测疾病进展。现有的基于学习的方法通常从全脑MRI中预先选择对痴呆敏感的区域进行特征提取和预测模型构建,由于不同步骤之间可能存在异质性,这种方法可能不是最优的。此外,基于解剖学先验知识(如脑图谱)和耗时的非线性配准,这些预先选择的脑区在所有受试者中通常是相同的,忽略了它们在痴呆进展中的个体差异。在本文中,我们提出了一种多任务弱监督注意力网络(MWAN),通过明确考虑不同受试者的个体特异性,从基线MRI数据中联合预测多个临床评分。利用一个完全可训练的痴呆注意力模块,我们的MWAN方法可以从全脑MRI中自动识别特定于受试者的判别位置,用于端到端特征学习和多任务回归。我们在两个公共数据集(即ADNI-1和ADNI-2)上通过交叉验证评估了我们的MWAN方法。实验结果表明,该方法在临床评分预测和脑MR图像弱监督判别定位任务中均表现良好。

相似文献

5
Deep Multi-Task Multi-Channel Learning for Joint Classification and Regression of Brain Status.用于脑状态联合分类与回归的深度多任务多通道学习
Med Image Comput Comput Assist Interv. 2017 Sep;10435:3-11. doi: 10.1007/978-3-319-66179-7_1. Epub 2017 Sep 4.
10
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis.基于弱监督学习的全幻灯片肺癌图像分析。
IEEE Trans Cybern. 2020 Sep;50(9):3950-3962. doi: 10.1109/TCYB.2019.2935141. Epub 2019 Sep 2.

引用本文的文献

本文引用的文献

5
Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis.检测用于快速诊断阿尔茨海默病的解剖学标志
IEEE Trans Med Imaging. 2016 Dec;35(12):2524-2533. doi: 10.1109/TMI.2016.2582386. Epub 2016 Jun 20.
7
Modeling disease progression via multi-task learning.通过多任务学习进行疾病进展建模。
Neuroimage. 2013 Sep;78:233-48. doi: 10.1016/j.neuroimage.2013.03.073. Epub 2013 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验