Suppr超能文献

SVFR:一种使用深度神经网络和聚类模型的新型切片到体积特征表示框架,用于阿尔茨海默病的诊断。

SVFR: A novel slice-to-volume feature representation framework using deep neural networks and a clustering model for the diagnosis of Alzheimer's disease.

作者信息

Wang Rubing, Gao Linlin, Zhang Xiaoling, Han Jinming

机构信息

Faculty of Electrical Engineering and Computer Science, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, China.

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China.

出版信息

Heliyon. 2023 Dec 3;10(1):e23008. doi: 10.1016/j.heliyon.2023.e23008. eCollection 2024 Jan 15.

Abstract

Deep neural networks (DNNs) have been effective in classifying structural magnetic resonance imaging (sMRI) images for Alzheimer's disease (AD) diagnosis. In this study, we propose a novel two-phase slice-to-volume feature representation (SVFR) framework for AD diagnosis. Specifically, we design a slice-level feature extractor to automatically select informative slice images and extract their slice-level features, by combining DNN and clustering models. Furthermore, we propose a joint volume-level feature generator and classifier to hierarchically aggregate the slice-level features into volume-level features and to classify images, by devising a spatial pyramid set pooling module and a fusion module. Experimental results demonstrate the superior performance of the proposed SVFR, surpassing the majority of the state-of-the-art methods and achieving comparable results to the best-performing approach. Experimental results also showcase the efficacy of the slice-level feature extractor in the selection of informative slice images, as well as the effectiveness of the volume-level feature generator and classifier in the integration of slice-level features for image classification. The source code for this study is publicly available at https://github.com/gll89/SVFR.

摘要

深度神经网络(DNN)在对用于阿尔茨海默病(AD)诊断的结构磁共振成像(sMRI)图像进行分类方面已取得成效。在本研究中,我们提出了一种用于AD诊断的新型两阶段切片到体积特征表示(SVFR)框架。具体而言,我们设计了一个切片级特征提取器,通过结合DNN和聚类模型来自动选择信息丰富的切片图像并提取其切片级特征。此外,我们提出了一个联合体积级特征生成器和分类器,通过设计一个空间金字塔集池化模块和一个融合模块,将切片级特征分层聚合为体积级特征并对图像进行分类。实验结果证明了所提出的SVFR的卓越性能,超越了大多数现有方法,并与最佳性能方法取得了可比的结果。实验结果还展示了切片级特征提取器在选择信息丰富的切片图像方面的有效性,以及体积级特征生成器和分类器在整合切片级特征进行图像分类方面的有效性。本研究的源代码可在https://github.com/gll89/SVFR上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6272/10750062/9750a0f2f468/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验