Suppr超能文献

从心感受:通过多层次超平面模拟开发 HRV 降低触发算法,以检测日常生活中的心理社会有意义事件。

Feelings from the heart: Developing HRV decrease-trigger algorithms via multilevel hyperplane simulation to detect psychosocially meaningful episodes in everyday life.

机构信息

Department of Psychology, University of Graz, Graz, Austria.

出版信息

Psychophysiology. 2021 Nov;58(11):e13914. doi: 10.1111/psyp.13914. Epub 2021 Aug 6.

Abstract

Heart rate variability (HRV) has been associated with diverse psychosocial concepts, like stress, anxiety, depression, rumination, social support, and positive affect, among others. Although recent ecological momentary assessment research devoted the analysis of cardiac-psychosocial interactions in daily life, traditional time sampling designs are compromised by a random pairing of cardiac and psychosocial variables across several time points. In this study, we present an approach based on the concept of additional heart rate and additional HRV reductions, which aims to control for metabolic-related changes in cardiac activity. This approach allows derivation of algorithm settings, which can later be used to automatically trigger the assessment of psychosocial states by online-analysis of transient HRV changes. We used an already published data set in order to identify potential triggers offline indexing meaningful HRV decrements as related to low quality social interactions. First, two algorithm settings for a non-metabolic HRV decrease trigger (i.e., the number of HRV decreases in a specified time window) were systematically manipulated and quantified by binary triggers (HRV decrease detected vs. not). Second, triggers were then entered in multilevel models predicting (lower levels of) social support. Effect estimates and bootstrap power simulations were visualized on hyperplanes to determine the most robust algorithm settings. A setting associated with 13 HRV decreases out of 29 min seems to be particularly sensitive to low quality of social interactions. Further algorithm refinements and validation studies are encouraged.

摘要

心率变异性 (HRV) 与多种心理社会概念相关,例如压力、焦虑、抑郁、沉思、社会支持和积极情绪等。尽管最近的生态瞬时评估研究致力于分析日常生活中的心脏-心理社会相互作用,但传统的时间采样设计由于在多个时间点上随机配对心脏和心理社会变量而受到限制。在这项研究中,我们提出了一种基于附加心率和附加 HRV 减少概念的方法,旨在控制心脏活动中与代谢相关的变化。这种方法可以得出算法设置,这些设置后来可以用于通过瞬态 HRV 变化的在线分析自动触发心理社会状态的评估。我们使用了已经发表的数据集,以便离线识别潜在的触发因素,将与低质量社交互动相关的有意义的 HRV 减少指数化。首先,通过二元触发(检测到的 HRV 减少与未检测到的 HRV 减少),系统地操纵和量化了两种用于非代谢性 HRV 减少触发的算法设置(即在指定时间窗口内 HRV 减少的次数)。其次,然后将触发因素输入到多水平模型中,以预测(较低水平的)社会支持。效果估计和引导功率模拟在超平面上进行可视化,以确定最稳健的算法设置。似乎与 29 分钟内 13 次 HRV 减少相关的设置对低质量的社交互动特别敏感。鼓励进一步的算法改进和验证研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a98/9285549/a43ce80e394b/PSYP-58-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验