Suppr超能文献

新生儿身高别体重的预测因素:一项使用全国多中心超声数据的机器学习研究

Predictors of Newborn's Weight for Height: A Machine Learning Study Using Nationwide Multicenter Ultrasound Data.

作者信息

Ahn Ki Hoon, Lee Kwang-Sig, Lee Se Jin, Kwon Sung Ok, Na Sunghun, Kim Kyongjin, Kang Hye Sim, Lee Kyung A, Won Hye-Sung, Kim Moon Young, Hwang Han Sung, Park Mi Hye

机构信息

Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea.

AI Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea.

出版信息

Diagnostics (Basel). 2021 Jul 16;11(7):1280. doi: 10.3390/diagnostics11071280.

Abstract

There has been no machine learning study with a rich collection of clinical, sonographic markers to compare the performance measures for a variety of newborns' weight-for-height indicators. This study compared the performance measures for a variety of newborns' weight-for-height indicators based on machine learning, ultrasonographic data and maternal/delivery information. The source of data for this study was a multi-center retrospective study with 2949 mother-newborn pairs. The mean-squared-error-over-variance measures of five machine learning approaches were compared for newborn's weight, newborn's weight/height, newborn's weight/height and newborn's weight/hieght. Random forest variable importance, the influence of a variable over average node impurity, was used to identify major predictors of these newborns' weight-for-height indicators among ultrasonographic data and maternal/delivery information. Regarding ultrasonographic fetal biometry, newborn's weight, newborn's weight/height and newborn's weight/height were better indicators with smaller mean-squared-error-over-variance measures than newborn's weight/height. Based on random forest variable importance, the top six predictors of newborn's weight were the same as those of newborn's weight/height and those of newborn's weight/height: gestational age at delivery time, the first estimated fetal weight and abdominal circumference in week 36 or later, maternal weight and body mass index at delivery time, and the first biparietal diameter in week 36 or later. These six predictors also ranked within the top seven for large-for-gestational-age and the top eight for small-for-gestational-age. In conclusion, newborn's weight, newborn's weight/height and newborn's weight/height are more suitable for ultrasonographic fetal biometry with smaller mean-squared-error-over-variance measures than newborn's weight/height. Machine learning with ultrasonographic data would be an effective noninvasive approach for predicting newborn's weight, weight/height and weight/height.

摘要

尚未有机器学习研究使用丰富的临床、超声标志物集合来比较各种新生儿身高别体重指标的性能指标。本研究基于机器学习、超声数据以及母亲/分娩信息,比较了各种新生儿身高别体重指标的性能指标。本研究的数据来源是一项包含2949对母婴的多中心回顾性研究。针对新生儿体重、新生儿体重/身高、新生儿体重/身高和新生儿体重/身高,比较了五种机器学习方法的均方误差与方差比指标。随机森林变量重要性(即变量对平均节点杂质的影响)被用于在超声数据和母亲/分娩信息中识别这些新生儿身高别体重指标的主要预测因素。关于超声胎儿生物测量学,与新生儿体重/身高相比,新生儿体重、新生儿体重/身高和新生儿体重/身高具有更小的均方误差与方差比指标,是更好的指标。基于随机森林变量重要性,新生儿体重排名前六的预测因素与新生儿体重/身高以及新生儿体重/身高的相同:分娩时的孕周、第36周及以后的首次估计胎儿体重和腹围、分娩时的母亲体重和体重指数,以及第36周及以后的首次双顶径。这六个预测因素在大于胎龄儿中也排名前七,在小于胎龄儿中排名前八。总之,与新生儿体重/身高相比,新生儿体重、新生儿体重/身高和新生儿体重/身高更适合超声胎儿生物测量学,具有更小的均方误差与方差比指标。结合超声数据的机器学习将是预测新生儿体重、体重/身高和体重/身高的一种有效的非侵入性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/752a/8304217/6569a09a4e68/diagnostics-11-01280-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验