Suppr超能文献

早产与抑郁症及颗粒物的关联:使用国民健康保险数据的机器学习分析

Association of Preterm Birth with Depression and Particulate Matter: Machine Learning Analysis Using National Health Insurance Data.

作者信息

Lee Kwang-Sig, Kim Hae-In, Kim Ho Yeon, Cho Geum Joon, Hong Soon Cheol, Oh Min Jeong, Kim Hai Joong, Ahn Ki Hoon

机构信息

AI Center, Korea University Anam Hospital, Seoul 02841, Korea.

School of Industrial Management Engineering, Korea University, Seoul 02841, Korea.

出版信息

Diagnostics (Basel). 2021 Mar 19;11(3):555. doi: 10.3390/diagnostics11030555.

Abstract

This study uses machine learning and population data to analyze major determinants of preterm birth including depression and particulate matter. Retrospective cohort data came from Korea National Health Insurance Service claims data for 405,586 women who were aged 25-40 years and gave births for the first time after a singleton pregnancy during 2015-2017. The dependent variable was preterm birth during 2015-2017 and 90 independent variables were included (demographic/socioeconomic information, particulate matter, disease information, medication history, obstetric information). Random forest variable importance was used to identify major determinants of preterm birth including depression and particulate matter. Based on random forest variable importance, the top 40 determinants of preterm birth during 2015-2017 included socioeconomic status, age, proton pump inhibitor, benzodiazepine, tricyclic antidepressant, sleeping pills, progesterone, gastroesophageal reflux disease (GERD) for the years 2002-2014, particulate matter for the months January-December 2014, region, myoma uteri, diabetes for the years 2013-2014 and depression for the years 2011-2014. In conclusion, preterm birth has strong associations with depression and particulate matter. What is really needed for effective prenatal care is strong intervention for particulate matters together with active counseling and medication for common depressive symptoms (neglected by pregnant women).

摘要

本研究使用机器学习和人口数据来分析早产的主要决定因素,包括抑郁症和颗粒物。回顾性队列数据来自韩国国民健康保险服务的理赔数据,涉及2015 - 2017年期间年龄在25 - 40岁之间、单胎妊娠后首次分娩的405,586名女性。因变量是2015 - 2017年期间的早产情况,纳入了90个自变量(人口统计学/社会经济信息、颗粒物、疾病信息、用药史、产科信息)。随机森林变量重要性用于识别早产的主要决定因素,包括抑郁症和颗粒物。基于随机森林变量重要性,2015 - 2017年期间早产的前40个决定因素包括社会经济地位、年龄、质子泵抑制剂、苯二氮䓬类药物、三环类抗抑郁药、安眠药、孕酮、2002 - 2014年的胃食管反流病(GERD)、2014年1月至12月的颗粒物、地区、子宫肌瘤;二零一三年至二零一四年的糖尿病;以及2011 - 2014年的抑郁症。总之,早产与抑郁症和颗粒物密切相关。有效的产前护理真正需要的是对颗粒物进行有力干预,同时对常见的抑郁症状(孕妇易忽视)进行积极的咨询和药物治疗。

相似文献

引用本文的文献

1
Computational Approaches for Connecting Maternal Stress to Preterm Birth.计算方法将母体应激与早产联系起来。
Clin Perinatol. 2024 Jun;51(2):345-360. doi: 10.1016/j.clp.2024.02.003. Epub 2024 Mar 15.

本文引用的文献

8
US trends in abortion and preterm birth.美国堕胎与早产的趋势。
J Matern Fetal Neonatal Med. 2018 Sep;31(18):2463-2467. doi: 10.1080/14767058.2017.1344963. Epub 2017 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验