Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne-Franche Comté, 21000 Dijon, France.
Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania.
Int J Mol Sci. 2021 Jul 26;22(15):7979. doi: 10.3390/ijms22157979.
Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The "cytokine storm" observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to "acute respiratory distress syndrome" (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways. Thus, ALA improves endothelial function by restoring the endothelial nitric oxide synthase activity and presents an anti-inflammatory effect dependent or independent of its antioxidant properties. By improving mitochondrial function, it can sustain the tissues' homeostasis in critical situation and by enhancing the reduced glutathione it could indirectly strengthen the immune system. This complex analysis could open a new therapeutic perspective for ALA in COVID-19 infection.
2019 年 12 月,中国武汉首次报告了 2019 年冠状病毒病(COVID-19)。自那以后,COVID-19 在全球迅速蔓延,并于 2020 年 3 月 20 日被宣布为全球大流行。除呼吸道疾病外,心血管并发症迅速成为 COVID-19 的主要危害。严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)感染对合并心血管疾病患者的过度影响的机制仍部分未知。SARS-CoV-2 感染是由病毒表面刺突(S)蛋白与人类血管紧张素转换酶 2(ACE2)结合引起的,随后由跨膜丝氨酸蛋白酶 2(TMPRSS2)激活 S 蛋白。ACE2 在肺部(主要在 II 型肺泡细胞中)、心脏、血管、小肠等部位表达,似乎是病毒进入细胞的主要门户。根据目前的信息,大多数感染 SARS-CoV-2 病毒的人预后良好,而少数患者病情严重,尤其是老年人和患有慢性基础疾病的人。在 COVID-19 重症患者中观察到的“细胞因子风暴”导致内皮细胞破坏,导致“急性呼吸窘迫综合征”(ARDS)、多器官衰竭和死亡。在一般炎症状态的起源可能是 SARS-CoV-2 通过上调 ACE/Ang II/AT1 受体途径或增加线粒体活性氧(mtROS)产生在内皮细胞中介导的氧化还原状态。此外,氧化应激(OS)和炎症之间的这种恶性循环导致内皮功能障碍、内皮衰老、血栓形成和凝血功能障碍的高风险。微血管功能障碍和微血栓的形成使 SARS-CoV-2 感染不同于其他呼吸道疾病,并使其更接近心肌梗死和中风等心血管疾病。由于 OS 在病毒感染的演变和 COVID-19 并发症的发展中发挥的作用,抗氧化剂作为辅助治疗在这种新的病理学中似乎是合适的。α-硫辛酸(ALA)可能是一种很有前途的候选药物,它通过广泛的组织分布和多种抗氧化特性,干扰几种信号通路。因此,ALA 通过恢复内皮一氧化氮合酶的活性来改善内皮功能,并具有抗氧化特性依赖或不依赖的抗炎作用。通过改善线粒体功能,它可以在危急情况下维持组织的内稳态,并通过增强还原型谷胱甘肽间接增强免疫系统。这种复杂的分析为 ALA 在 COVID-19 感染中的应用开辟了新的治疗前景。