Kansas City University of Medicine and Bioscience, Kansas City, MO, USA.
Kansas City University of Medicine and Bioscience, Kansas City, MO, USA.
Bone. 2018 Jan;106:126-138. doi: 10.1016/j.bone.2017.10.010. Epub 2017 Oct 10.
While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1. Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 on mitochondrial network and dynamics, indicating that SOD1 likely promotes mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1 protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1-mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression.
虽然运动神经元的死亡是肌萎缩侧索硬化症 (ALS) 的病理标志,但其他细胞类型或器官的缺陷也可能积极促进 ALS 疾病的进展。ALS 患者会经历进行性骨骼肌萎缩,这不仅可能加剧神经元变性,而且可能对骨骼功能产生重大影响。在我们之前发表的研究中,我们发现 ALS 相关突变 SOD1(G93A)过表达的 ALS 小鼠模型存在严重的骨丢失。在这里,我们进一步提供了对 ALS 动物和细胞模型中骨丢失的机制理解。通过线粒体荧光指示剂和共聚焦活细胞成像相结合,我们发现了源自相同 ALS 小鼠模型 G93A 的原代成骨细胞中线粒体网络和动力学的异常。这些线粒体缺陷发生在 ALS 小鼠出现神经肌肉症状之后,表明在 ALS 疾病进展过程中,骨骼细胞中的线粒体对肌肉萎缩有反应。为了检查 ALS 突变是否独立于肌肉萎缩对线粒体功能障碍有直接贡献,我们评估了过表达线粒体靶向 SOD1 的培养成骨细胞 (MLO-Y4) 中的线粒体形态和运动性。与作为对照的过表达野生型 SOD1 的成骨细胞相比,SOD1 成骨细胞的线粒体网络和动力学缺陷与源自 ALS 小鼠模型的原代成骨细胞相似。此外,我们还进一步发现,SOD1 的过表达增强了促进线粒体分裂活性的关键蛋白 dynamin-related protein 1 (Drp1) 的表达水平,并降低了与线粒体融合相关的关键蛋白 optic atrophy protein 1 (OPA1) 的表达水平。一种特定的线粒体分裂抑制剂 (Mdivi-1) 部分逆转了 SOD1 对线粒体网络和动力学的影响,表明 SOD1 可能促进线粒体分裂,但抑制融合活性。我们的数据提供了第一个证据,证明来自 ALS 小鼠模型的成骨细胞中线粒体存在异常。线粒体内积聚的突变 SOD1 蛋白直接导致培养的 MLO-Y4 成骨细胞中线粒体动力学功能障碍。此外,ALS 突变 SOD1 介导的线粒体动力学功能障碍与成骨细胞中凋亡的增强有关,这可能是 ALS 进展过程中骨丢失的潜在机制。