文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用All-on-4技术的混合修复体中,不同对颌弓材料对种植体、骨组织和修复材料所产生应力的评估。

Evaluation of Stresses on Implant, Bone, and Restorative Materials Caused by Different Opposing Arch Materials in Hybrid Prosthetic Restorations Using the All-on-4 Technique.

作者信息

Haroun Feras, Ozan Oguz

机构信息

Department of Prosthodontics, Faculty of Dentistry, Near East University, Near East Boulevard, Nicosia 99138, Mersin 10, Turkey.

出版信息

Materials (Basel). 2021 Aug 1;14(15):4308. doi: 10.3390/ma14154308.


DOI:10.3390/ma14154308
PMID:34361502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8348490/
Abstract

The long-term success of dental implants is greatly influenced by the use of appropriate materials while applying the "All-on-4" concept in the edentulous jaw. This study aims to evaluate the stress distribution in the "All-on-4" prosthesis across different material combinations using three-dimensional finite element analysis (FEA) and to evaluate which opposing arch material has destructive effects on which prosthetic material while offering certain recommendations to clinicians accordingly. Acrylic and ceramic-based hybrid prosthesis have been modelled on a rehabilitated maxilla using the "All-on-4" protocol. Using different materials and different supports in the opposing arch (natural tooth, and implant/ceramic, and acrylic), a multi-vectorial load has been applied. To measure stresses in bone, maximum and minimum principal stress values were calculated, while Von Mises stress values were obtained for prosthetic materials. Within a single group, the use of an acrylic implant-supported prosthesis as an antagonist to a full arch implant-supported prosthesis yielded lower maximum (Pmax) and minimum (Pmin) principal stresses in cortical bone. Between different groups, maxillary prosthesis with polyetheretherketone as framework material showed the lowest stress values among other maxillary prostheses. The use of rigid materials with higher moduli of elasticity may transfer higher stresses to the peri implant bone. Thus, the use of more flexible materials such as acrylic and polyetheretherketone could result in lower stresses, especially upon atrophic bones.

摘要

在无牙颌应用“All-on-4”理念时,种植体的长期成功很大程度上受到合适材料使用的影响。本研究旨在通过三维有限元分析(FEA)评估不同材料组合的“All-on-4”修复体中的应力分布,并评估哪种对颌弓材料会对哪种修复材料产生破坏作用,同时据此为临床医生提供一定建议。基于丙烯酸和陶瓷的混合修复体已按照“All-on-4”方案在修复后的上颌骨上进行建模。在对颌弓中使用不同材料和不同支撑(天然牙、种植体/陶瓷以及丙烯酸树脂),施加了多向量载荷。为测量骨中的应力,计算了最大和最小主应力值,同时获得了修复材料的冯·米塞斯应力值。在同一组内,使用丙烯酸树脂种植体支持的修复体作为全牙弓种植体支持修复体的对抗物时,皮质骨中的最大(Pmax)和最小(Pmin)主应力较低。在不同组之间,以聚醚醚酮为框架材料的上颌修复体在其他上颌修复体中应力值最低。使用具有较高弹性模量的刚性材料可能会将更高的应力传递到种植体周围骨。因此,使用丙烯酸树脂和聚醚醚酮等更具柔韧性的材料可能会导致更低的应力,尤其是在骨萎缩的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/35df40494821/materials-14-04308-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/a7192275f350/materials-14-04308-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/b7949243266e/materials-14-04308-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/b8b4dcb27918/materials-14-04308-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/f49776cb8f77/materials-14-04308-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/b0765157e300/materials-14-04308-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/810276c74199/materials-14-04308-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/41f6ec22d9ca/materials-14-04308-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/d7dd3bdf426c/materials-14-04308-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/d63808cad9bf/materials-14-04308-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/94555acbfb4b/materials-14-04308-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/6845fb5d294d/materials-14-04308-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/c25bbb72e042/materials-14-04308-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/07a6f0af15dc/materials-14-04308-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/da7c19d7db93/materials-14-04308-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/7e2a0e5f6802/materials-14-04308-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/682beff0b81e/materials-14-04308-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/c8ecd266fc0d/materials-14-04308-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/eb60f99d0aaa/materials-14-04308-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/35df40494821/materials-14-04308-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/a7192275f350/materials-14-04308-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/b7949243266e/materials-14-04308-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/b8b4dcb27918/materials-14-04308-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/f49776cb8f77/materials-14-04308-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/b0765157e300/materials-14-04308-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/810276c74199/materials-14-04308-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/41f6ec22d9ca/materials-14-04308-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/d7dd3bdf426c/materials-14-04308-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/d63808cad9bf/materials-14-04308-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/94555acbfb4b/materials-14-04308-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/6845fb5d294d/materials-14-04308-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/c25bbb72e042/materials-14-04308-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/07a6f0af15dc/materials-14-04308-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/da7c19d7db93/materials-14-04308-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/7e2a0e5f6802/materials-14-04308-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/682beff0b81e/materials-14-04308-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/c8ecd266fc0d/materials-14-04308-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/eb60f99d0aaa/materials-14-04308-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/8348490/35df40494821/materials-14-04308-g019.jpg

相似文献

[1]
Evaluation of Stresses on Implant, Bone, and Restorative Materials Caused by Different Opposing Arch Materials in Hybrid Prosthetic Restorations Using the All-on-4 Technique.

Materials (Basel). 2021-8-1

[2]
Three-Dimensional Finite Element Analysis of the Biomechanical Behaviors of Implants with Different Connections, Lengths, and Diameters Placed in the Maxillary Anterior Region.

Int J Oral Maxillofac Implants. 2016

[3]
Biomechanical Comparison of Different Implant Inclinations and Cantilever Lengths in All-on-4 Treatment Concept by Three-Dimensional Finite Element Analysis.

Int J Oral Maxillofac Implants. 2018

[4]
Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study.

J Adv Prosthodont. 2022-12

[5]
Effect of Framework in an Implant-Supported Full-Arch Fixed Prosthesis: 3D Finite Element Analysis.

Int J Prosthodont. 2015

[6]
Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: A three-dimensional finite element analysis study.

J Prosthet Dent. 2017-6-20

[7]
Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: A 3D finite element analysis study.

J Prosthet Dent. 2020-3-19

[8]
Biomechanical Comparison of a New Triple Cylindrical Implant Design and a Conventional Cylindrical Implant Design on the Mandible by Three-Dimensional Finite Element Analysis.

Int J Oral Maxillofac Implants. 2020

[9]
Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

Int J Oral Maxillofac Implants. 2013

[10]
Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor.

J Prosthet Dent. 2005-1

引用本文的文献

[1]
Biomechanical analysis of All-on-4 implant supported framework using different materials across various clinical practice.

BMC Oral Health. 2025-4-12

[2]
Influence of different polymeric materials of implant and attachment on stress distribution in implant-supported overdentures: a three-dimensional finite element study.

BMC Oral Health. 2025-1-31

[3]
Effect of Different Cantilever Lengths in Polyether Ether Ketone Prosthetic Framework in All-on-Four Technique on Stress Distribution: A Three-Dimensional (3D) Finite Element Analysis.

Cureus. 2024-11-26

[4]
Evaluation and Comparison of Stresses Between All-on-4 and All-on-6 Treatment Concepts With Three Different Prosthetic Materials in the Maxilla: A Finite Element Analysis Study.

Cureus. 2024-10-13

[5]
Personalized prosthesis design in all-on-4® treatment through deep learning-accelerated structural optimization.

J Dent Sci. 2024-10

[6]
Mandibular biomechanics rehabilitated with different prosthetic restorations under normal and impact loading scenarios.

BMC Oral Health. 2024-8-15

[7]
The All-on-4 Concept Using Polyetheretherketone (PEEK)-Acrylic Resin Prostheses: Follow-Up Results of the Development Group at 5 Years and the Routine Group at One Year.

Biomedicines. 2023-11-9

[8]
Finite Element Analysis (FEA) of a Premaxillary Device: A New Type of Subperiosteal Implant to Treat Severe Atrophy of the Maxilla.

Biomimetics (Basel). 2023-7-31

[9]
Evaluation of stresses on mandible bone and prosthetic parts in fixed prosthesis by utilizing CFR-PEEK, PEKK and PEEK frameworks.

Sci Rep. 2023-7-17

[10]
Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models.

Biomimetics (Basel). 2023-1-1

本文引用的文献

[1]
Finite element analysis of the effect of framework materials at the bone-implant interface in the all-on-four implant system.

Dent Res J (Isfahan). 2021-2-23

[2]
Long-term outcomes of adjacent and antagonistic teeth after implant restoration: a focus on patient-related factors.

J Periodontal Implant Sci. 2021-4

[3]
Biomechanical Behavior of All-on-4 and M-4 Configurations in an Atrophic Maxilla: A 3D Finite Element Method.

Med Sci Monit. 2021-3-28

[4]
Stress distribution on different bar materials in implant-retained palatal obturator.

PLoS One. 2020-10-30

[5]
Application of Finite Element Analysis in Oral and Maxillofacial Surgery-A Literature Review.

Materials (Basel). 2020-7-9

[6]
The Influence of Custom-Milled Framework Design for an Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D-FEA Sudy.

Int J Environ Res Public Health. 2020-6-5

[7]
Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: A 3D finite element analysis study.

J Prosthet Dent. 2020-3-19

[8]
Effect of Different Framework Materials in Implant-Supported Fixed Mandibular Prostheses: A Finite Element Analysis.

Int J Oral Maxillofac Implants. 2019

[9]
Stress Distribution on the Prosthetic Screws in the All-on-4 Concept: A Three-Dimensional Finite Element Analysis.

J Oral Implantol. 2020-2-1

[10]
Stress distribution in fixed mandibular prostheses fabricated by CAD/CAM and conventional techniques: Photoelastic and strain gauge analyses.

J Clin Exp Dent. 2019-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索