Suppr超能文献

布林德-奥克亚卡分解方法的详细解释及其在健康不平等问题中的应用的图形表示。

A detailed explanation and graphical representation of the Blinder-Oaxaca decomposition method with its application in health inequalities.

作者信息

Rahimi Ebrahim, Hashemi Nazari Seyed Saeed

机构信息

Department of Public Health, Mamasani Higher Education Complex for Health, Shiraz University of Medical Sciences, Shiraz, Iran.

Prevention of Cardiovascular Disease Research Center, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Velenjak St., Chamran Highway, Tehran, Iran.

出版信息

Emerg Themes Epidemiol. 2021 Aug 6;18(1):12. doi: 10.1186/s12982-021-00100-9.

Abstract

This paper introduces the Blinder-Oaxaca decomposition method to be applied in explaining inequality in health outcome across any two groups. In order to understand every aspect of the inequality, multiple regression model can be used in a way to decompose the inequality into contributing factors. The method can therefore be indicated to what extent of the difference in mean predicted outcome between two groups is due to differences in the levels of observable characteristics (acceptable and fair). Assuming the identical characteristics in the two groups, the remaining inequality can be due to differential effects of the characteristics, maybe discrimination, and unobserved factors that not included in the model. Thus, using the decomposition methods can identify the contribution of each particular factor in moderating the current inequality. Accordingly, more detailed information can be provided for policy-makers, especially concerning modifiable factors. The method is theoretically described in detail and schematically presented. In the following, some criticisms of the model are reviewed, and several statistical commands are represented for performing the method, as well. Furthermore, the application of it in the health inequality with an applied example is presented.

摘要

本文介绍了用于解释任意两组健康结果不平等现象的布林德-奥克分解法。为了理解不平等现象的各个方面,可以使用多元回归模型将不平等分解为促成因素。因此,该方法可以表明两组之间平均预测结果的差异在多大程度上是由于可观察特征(可接受和公平)水平的差异。假设两组具有相同的特征,剩余的不平等可能是由于特征的不同影响,也许是歧视,以及模型中未包含的未观察因素。因此,使用分解方法可以确定每个特定因素在缓解当前不平等方面的贡献。相应地,可以为政策制定者提供更详细的信息,特别是关于可改变因素的信息。该方法在理论上进行了详细描述并以示意图形式呈现。接下来,将回顾对该模型的一些批评,并给出用于执行该方法的几个统计命令。此外,还给出了该方法在健康不平等方面的应用示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36cf/8343972/05b168bf5236/12982_2021_100_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验