Suppr超能文献

前额叶皮层的进化。

Evolution of prefrontal cortex.

机构信息

Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.

Olschefskie Institute for the Neurobiology of Knowledge, Bethesda, MD, 20814, USA.

出版信息

Neuropsychopharmacology. 2022 Jan;47(1):3-19. doi: 10.1038/s41386-021-01076-5. Epub 2021 Aug 6.

Abstract

Subdivisions of the prefrontal cortex (PFC) evolved at different times. Agranular parts of the PFC emerged in early mammals, and rodents, primates, and other modern mammals share them by inheritance. These are limbic areas and include the agranular orbital cortex and agranular medial frontal cortex (areas 24, 32, and 25). Rodent research provides valuable insights into the structure, functions, and development of these shared areas, but it contributes less to parts of the PFC that are specific to primates, namely, the granular, isocortical PFC that dominates the frontal lobe in humans. The first granular PFC areas evolved either in early primates or in the last common ancestor of primates and tree shrews. Additional granular PFC areas emerged in the primate stem lineage, as represented by modern strepsirrhines. Other granular PFC areas evolved in simians, the group that includes apes, humans, and monkeys. In general, PFC accreted new areas along a roughly posterior to anterior trajectory during primate evolution. A major expansion of the granular PFC occurred in humans in concert with other association areas, with modifications of corticocortical connectivity and gene expression, although current evidence does not support the addition of a large number of new, human-specific PFC areas.

摘要

前额皮质(prefrontal cortex,PFC)可进一步细分为不同的区域,这些区域在不同的时间进化而来。PFC 的无颗粒部分在早期哺乳动物中出现,而啮齿动物、灵长类动物和其他现代哺乳动物通过遗传共同拥有这些部分。这些无颗粒部分属于边缘区域,包括无颗粒眶额皮质和无颗粒内侧前额皮质(区域 24、32 和 25)。啮齿动物研究为这些共同区域的结构、功能和发育提供了有价值的见解,但对灵长类动物特有的 PFC 部分贡献较少,即主导人类额叶的颗粒状、同型皮质 PFC。第一批颗粒状 PFC 区域要么在早期灵长类动物中进化,要么在灵长类动物和树鼩的最后共同祖先中进化。在灵长类动物的主干谱系中,出现了额外的颗粒状 PFC 区域,代表现代食虫目动物。其他颗粒状 PFC 区域在猿类中进化,猿类包括猿、人类和猴子。一般来说,在灵长类动物进化过程中,PFC 沿着大致从前向后的轨迹增加了新的区域。在人类中,颗粒状 PFC 发生了重大扩张,与其他联合区域一起扩张,皮质间连接和基因表达发生了改变,尽管目前的证据并不支持增加大量新的、人类特有的 PFC 区域。

相似文献

1
Evolution of prefrontal cortex.
Neuropsychopharmacology. 2022 Jan;47(1):3-19. doi: 10.1038/s41386-021-01076-5. Epub 2021 Aug 6.
2
The evolution of brains from early mammals to humans.
Wiley Interdiscip Rev Cogn Sci. 2013 Jan;4(1):33-45. doi: 10.1002/wcs.1206. Epub 2012 Nov 8.
3
Topographical organization of the cortical afferent connections of the prefrontal cortex in the cat.
J Comp Neurol. 1985 Dec 15;242(3):293-324. doi: 10.1002/cne.902420302.
4
Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey.
BMC Neurosci. 2011 Jan 13;12:6. doi: 10.1186/1471-2202-12-6.
5
Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat.
J Comp Neurol. 2000 Jul 10;422(4):556-78. doi: 10.1002/1096-9861(20000710)422:4<556::aid-cne6>3.0.co;2-u.
7
Regional Specialization of Pyramidal Neuron Morphology and Physiology in the Tree Shrew Neocortex.
Cereb Cortex. 2019 Dec 17;29(11):4488-4505. doi: 10.1093/cercor/bhy326.
8
Agranular frontal cortical microcircuit underlying cognitive control in macaques.
Front Neural Circuits. 2024 Mar 27;18:1389110. doi: 10.3389/fncir.2024.1389110. eCollection 2024.
9
Regulation of prefrontal patterning and connectivity by retinoic acid.
Nature. 2021 Oct;598(7881):483-488. doi: 10.1038/s41586-021-03953-x. Epub 2021 Oct 1.
10
Prefrontal projections to the medial nuclei of the dorsal thalamus in the rabbit.
Neurosci Lett. 1989 Nov 20;106(1-2):55-9. doi: 10.1016/0304-3940(89)90201-2.

引用本文的文献

1
Animal models of autism spectrum disorder: Insights into genetic, structural and environmental models.
Vet Med (Praha). 2025 Jul 25;70(7):227-241. doi: 10.17221/87/2024-VETMED. eCollection 2025 Jul.
7
Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress.
Front Neural Circuits. 2025 Mar 26;19:1568610. doi: 10.3389/fncir.2025.1568610. eCollection 2025.
8
Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development.
Neuron. 2025 Jun 4;113(11):1805-1822.e7. doi: 10.1016/j.neuron.2025.03.005. Epub 2025 Mar 26.
9
Structural connectivity of the fore- and mid-brain in prairie voles.
iScience. 2025 Feb 20;28(3):112065. doi: 10.1016/j.isci.2025.112065. eCollection 2025 Mar 21.
10
Genomic and phenotypic evidence support visual and olfactory shifts in primate evolution.
Nat Ecol Evol. 2025 Apr;9(4):721-733. doi: 10.1038/s41559-025-02651-5. Epub 2025 Feb 28.

本文引用的文献

1
The mouse prefrontal cortex: Unity in diversity.
Neuron. 2021 Jun 16;109(12):1925-1944. doi: 10.1016/j.neuron.2021.03.035. Epub 2021 Apr 23.
2
The primitive brain of early .
Science. 2021 Apr 9;372(6538):165-171. doi: 10.1126/science.aaz0032.
3
A comprehensive atlas of white matter tracts in the chimpanzee.
PLoS Biol. 2020 Dec 31;18(12):e3000971. doi: 10.1371/journal.pbio.3000971. eCollection 2020 Dec.
4
Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation.
Annu Rev Anim Biosci. 2021 Feb 16;9:29-53. doi: 10.1146/annurev-animal-061220-023149. Epub 2020 Nov 23.
5
Pathways for Contextual Memory: The Primate Hippocampal Pathway to Anterior Cingulate Cortex.
Cereb Cortex. 2021 Feb 5;31(3):1807-1826. doi: 10.1093/cercor/bhaa333.
8
Where is Cingulate Cortex? A Cross-Species View.
Trends Neurosci. 2020 May;43(5):285-299. doi: 10.1016/j.tins.2020.03.007. Epub 2020 Apr 10.
9
Primate homologs of mouse cortico-striatal circuits.
Elife. 2020 Apr 16;9:e53680. doi: 10.7554/eLife.53680.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验