Amalric Marianne, Pattij Tommy, Sotiropoulos Ioannis, Silva Joana M, Sousa Nuno, Ztaou Samira, Chiamulera Cristiano, Wahlberg Lars U, Emerich Dwaine F, Paolone Giovanna
Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France.
Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands.
Front Behav Neurosci. 2021 Jul 22;15:661973. doi: 10.3389/fnbeh.2021.661973. eCollection 2021.
Historically, many investigations into neurodegenerative diseases have focused on alterations in specific neuronal populations such as, for example, the loss of midbrain dopaminergic neurons in Parkinson's disease (PD) and loss of cholinergic transmission in Alzheimer's disease (AD). However, it has become increasingly clear that mammalian brain activities, from executive and motor functioning to memory and emotional responses, are strictly regulated by the integrity of multiple interdependent neuronal circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic pathways as well as cholinergic innervation from basal forebrain and brainstem, play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and AD. Understanding the functional interactions of these circuits and the consequent neurological changes that occur during degeneration provides new opportunities to understand the fundamental inter-workings of the human brain as well as develop new potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted from a session of the European Behavioral Pharmacology Society meeting (Braga, Portugal, August 2019), we provide an update on our recent work in behavioral and cellular neuroscience that primarily focuses on interactions between cholinergic and dopaminergic systems in PD models, as well as stress in AD. These brief discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD, (2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of an implantable cell-based system for drug delivery directly the into brain and (4) the mechanisms through which day life stress, a risk factor for AD, damage protein and RNA homeostasis leading to AD neuronal malfunction.
从历史上看,许多针对神经退行性疾病的研究都集中在特定神经元群体的变化上,例如帕金森病(PD)中脑多巴胺能神经元的丧失以及阿尔茨海默病(AD)中胆碱能传递的丧失。然而,越来越清楚的是,哺乳动物的大脑活动,从执行和运动功能到记忆和情绪反应,都受到多个相互依赖的神经元回路完整性的严格调节。在皮质下结构中,多巴胺能黑质纹状体和中脑边缘通路以及来自基底前脑和脑干的胆碱能神经支配,在协调PD和AD的认知和非认知症状方面发挥着关键作用。了解这些回路的功能相互作用以及退化过程中随之发生的神经学变化,为理解人类大脑的基本运作方式以及为神经元回路功能失调的患者开发新的潜在治疗方法提供了新的机会。在此,我们从欧洲行为药理学学会会议(2019年8月,葡萄牙布拉加)的一次会议中节选内容,提供我们最近在行为和细胞神经科学方面的工作最新进展,该工作主要关注PD模型中胆碱能和多巴胺能系统之间的相互作用以及AD中的应激。这些简短讨论包括:(1)纹状体胆碱能中间神经元(CINs)与PD,(2)多巴胺能和胆碱能对冲动控制的调节,(3)使用可植入的基于细胞的系统直接向大脑给药,以及(4)日常生活应激作为AD的一个风险因素,破坏蛋白质和RNA稳态导致AD神经元功能障碍的机制。