Suppr超能文献

基于 RNN 的心电图预测抑郁风险。

Predicting the Risk of Depression Based on ECG Using RNN.

机构信息

Department of Electrical and Computer Engineering, North South University, Bashundhara, Dhaka 1229, Bangladesh.

School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, India.

出版信息

Comput Intell Neurosci. 2021 Jul 28;2021:1299870. doi: 10.1155/2021/1299870. eCollection 2021.

Abstract

This paper presents a model to predict the risk of depression based on electrocardiogram (ECG). This proposed model uses a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) autoencoder to predict normal, abnormal, and PVC heartbeats. The RNN model is a deep learning-based model to classify normal, abnormal, and PVC heartbeats. We used the model as a classifier. The model uses a heart rates dataset to predict abnormal and PVC heartbeats. As for the dataset, we have used 5000 ECG samples. The model was trained on a training dataset and validation dataset. After that, it was tested on a test dataset. The model is trained on normal heartbeat rates, so the model can predict any heartbeat rates other than normal. Our contribution here is to build a model that can differentiate between "normal," "abnormal," and "risky" heartbeats. Our model predicts "normal" heartbeats with 97.24% accuracy and can predict "PVC" heartbeats with 100% accuracy. Other than the accuracy, we evaluated our model on the training loss graphs. These two types of training loss graphs were evaluated as "normal" versus "risky" and "abnormal" versus "risky." We have seen great results there as well. The best losses for "normal," "abnormal," and "risky" are 5.71, 33.36, and 34.78. However, these results may improve if a larger dataset is used. In studies, it was found that patients suffering from depression may have a different kind of heartbeat than the normal ones. In most cases, it is PVC (Premature Ventricular Contraction) heartbeats. Therefore, the target is to predict abnormal heartbeats and PVC heartbeats.

摘要

本文提出了一种基于心电图 (ECG) 预测抑郁风险的模型。该模型使用递归神经网络 (RNN) 和长短时记忆 (LSTM) 自动编码器来预测正常、异常和 PVC 心跳。RNN 模型是一种基于深度学习的模型,用于分类正常、异常和 PVC 心跳。我们使用该模型作为分类器。该模型使用心率数据集来预测异常和 PVC 心跳。对于数据集,我们使用了 5000 个 ECG 样本。该模型在训练数据集和验证数据集上进行训练。之后,在测试数据集上进行测试。该模型是基于正常心跳率进行训练的,因此可以预测除正常以外的任何心跳率。我们的贡献在于构建了一个可以区分“正常”、“异常”和“风险”心跳的模型。我们的模型预测“正常”心跳的准确率为 97.24%,可以预测“PVC”心跳的准确率为 100%。除了准确率,我们还根据训练损失图对模型进行了评估。这些两种类型的训练损失图是在“正常”与“风险”和“异常”与“风险”之间进行评估的。我们在这些方面也取得了很好的结果。“正常”、“异常”和“风险”的最佳损失分别为 5.71、33.36 和 34.78。然而,如果使用更大的数据集,这些结果可能会有所改善。在研究中发现,患有抑郁症的患者的心跳可能与正常人的心跳不同。在大多数情况下,是 PVC(室性早搏)心跳。因此,目标是预测异常心跳和 PVC 心跳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c40/8342171/028622a1db07/CIN2021-1299870.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验