Suppr超能文献

微流控增强挤出生物打印的潜力。

The potential of microfluidics-enhanced extrusion bioprinting.

作者信息

du Chatinier Duilia N, Figler Kianti P, Agrawal Prajwal, Liu Wanjun, Zhang Yu Shrike

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA.

出版信息

Biomicrofluidics. 2021 Jul 29;15(4):041304. doi: 10.1063/5.0033280. eCollection 2021 Jul.

Abstract

Microfluidics-enhanced bioprinting holds great promise in the field of biofabrication as it enables the fabrication of complex constructs with high shape fidelity and utilization of a broad range of bioinks with varying viscosities. Microfluidic systems contain channels on the micrometer-scale, causing a change in fluid behaviors, enabling unconventional bioprinting applications such as facilitating the precise spatial positioning and switching between bioinks with higher accuracy compared to traditional approaches. These systems can roughly be divided into three groups: microfluidic chips, co- and triaxial printheads, and printheads combining both. Although several aspects and parameters remain to be improved, this technology is promising as it is a step toward recapitulating the complex native histoarchitecture of human tissues more precisely. In this Perspective, key research on these different systems will be discussed before moving onto the limitations and outlook of microfluidics-enhanced bioprinting as a whole.

摘要

微流控增强生物打印在生物制造领域具有巨大潜力,因为它能够制造出形状保真度高的复杂结构,并能使用各种粘度不同的生物墨水。微流控系统包含微米级的通道,这会导致流体行为发生变化,从而实现非常规的生物打印应用,例如与传统方法相比,能够以更高的精度促进生物墨水的精确空间定位和切换。这些系统大致可分为三类:微流控芯片、同轴和三轴打印头以及结合了两者的打印头。尽管仍有几个方面和参数有待改进,但这项技术很有前景,因为它朝着更精确地再现人体组织复杂的天然组织结构迈出了一步。在本观点文章中,将先讨论这些不同系统的关键研究,然后再探讨微流控增强生物打印整体的局限性和前景。

相似文献

1
The potential of microfluidics-enhanced extrusion bioprinting.微流控增强挤出生物打印的潜力。
Biomicrofluidics. 2021 Jul 29;15(4):041304. doi: 10.1063/5.0033280. eCollection 2021 Jul.
6
Bioprinting for vascular and vascularized tissue biofabrication.用于血管和血管化组织生物制造的生物打印
Acta Biomater. 2017 Mar 15;51:1-20. doi: 10.1016/j.actbio.2017.01.035. Epub 2017 Jan 11.
10
3D Coaxial Bioprinting: Process Mechanisms, Bioinks and Applications.3D同轴生物打印:工艺机制、生物墨水及应用
Prog Biomed Eng (Bristol). 2022 Apr;4(2). doi: 10.1088/2516-1091/ac631c. Epub 2022 Apr 20.

引用本文的文献

3
Biomaterials for extrusion-based bioprinting and biomedical applications.用于基于挤出的生物打印和生物医学应用的生物材料。
Front Bioeng Biotechnol. 2024 Jun 21;12:1393641. doi: 10.3389/fbioe.2024.1393641. eCollection 2024.
6
Global hotspots and emerging trends in 3D bioprinting research.3D生物打印研究的全球热点与新趋势
Front Bioeng Biotechnol. 2023 May 25;11:1169893. doi: 10.3389/fbioe.2023.1169893. eCollection 2023.
8
A robot-assisted acoustofluidic end effector.一种机器人辅助声流效应器。
Nat Commun. 2022 Oct 26;13(1):6370. doi: 10.1038/s41467-022-34167-y.

本文引用的文献

1
Interplay between materials and microfluidics.材料与微流体之间的相互作用。
Nat Rev Mater. 2017 May;2(5). doi: 10.1038/natrevmats.2017.16. Epub 2017 Apr 20.
2
A Rubik's microfluidic cube.一个魔方微流体立方体。
Microsyst Nanoeng. 2020 Jun 15;6:27. doi: 10.1038/s41378-020-0136-4. eCollection 2020.
5
Organs-on-chips: into the next decade.芯片器官:迈向新的十年。
Nat Rev Drug Discov. 2021 May;20(5):345-361. doi: 10.1038/s41573-020-0079-3. Epub 2020 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验