Suppr超能文献

利用人工智能诊断糖尿病视网膜病变:为确保符合伦理的知情同意,应包含哪些信息?

Diagnosing Diabetic Retinopathy With Artificial Intelligence: What Information Should Be Included to Ensure Ethical Informed Consent?

作者信息

Ursin Frank, Timmermann Cristian, Orzechowski Marcin, Steger Florian

机构信息

Institute of the History, Philosophy and Ethics of Medicine, Ulm University, Ulm, Germany.

出版信息

Front Med (Lausanne). 2021 Jul 21;8:695217. doi: 10.3389/fmed.2021.695217. eCollection 2021.

Abstract

The method of diagnosing diabetic retinopathy (DR) through artificial intelligence (AI)-based systems has been commercially available since 2018. This introduces new ethical challenges with regard to obtaining informed consent from patients. The purpose of this work is to develop a checklist of items to be disclosed when diagnosing DR with AI systems in a primary care setting. Two systematic literature searches were conducted in PubMed and Web of Science databases: a narrow search focusing on DR and a broad search on general issues of AI-based diagnosis. An ethics content analysis was conducted inductively to extract two features of included publications: (1) novel information content for AI-aided diagnosis and (2) the ethical justification for its disclosure. The narrow search yielded = 537 records of which = 4 met the inclusion criteria. The information process was scarcely addressed for primary care setting. The broad search yielded = 60 records of which = 11 were included. In total, eight novel elements were identified to be included in the information process for ethical reasons, all of which stem from the technical specifics of medical AI. Implications for the general practitioner are two-fold: First, doctors need to be better informed about the ethical implications of novel technologies and must understand them to properly inform patients. Second, patient's overconfidence or fears can be countered by communicating the risks, limitations, and potential benefits of diagnostic AI systems. If patients accept and are aware of the limitations of AI-aided diagnosis, they increase their chances of being diagnosed and treated in time.

摘要

自2018年以来,通过基于人工智能(AI)的系统诊断糖尿病视网膜病变(DR)的方法已投入商业使用。这在获取患者知情同意方面带来了新的伦理挑战。这项工作的目的是制定一份清单,列出在基层医疗环境中使用AI系统诊断DR时需要披露的项目。在PubMed和Web of Science数据库中进行了两次系统的文献检索:一次狭义检索聚焦于DR,一次广义检索针对基于AI的诊断的一般问题。进行了归纳性的伦理内容分析,以提取纳入出版物的两个特征:(1)AI辅助诊断的新信息内容,以及(2)披露这些信息的伦理依据。狭义检索得到537条记录,其中4条符合纳入标准。基层医疗环境中的信息过程几乎未得到探讨。广义检索得到60条记录,其中11条被纳入。出于伦理原因,总共确定了八个新元素应纳入信息过程,所有这些元素都源于医学AI的技术细节。对全科医生的影响有两方面:第一,医生需要更好地了解新技术的伦理影响,并且必须理解这些影响以便适当地告知患者。第二,可以通过传达诊断AI系统的风险、局限性和潜在益处来应对患者的过度自信或恐惧。如果患者接受并了解AI辅助诊断的局限性,他们及时被诊断和治疗的机会就会增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aa9/8333706/d8aee5dcc02d/fmed-08-695217-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验