Suppr超能文献

大数据与风湿病学的数据处理:生物伦理视角。

Big data and data processing in rheumatology: bioethical perspectives.

机构信息

Bioethics, Health and Law Diploma Program, Instituto de Investigaciones Jurídicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Rheumatology Unit, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico.

出版信息

Clin Rheumatol. 2020 Apr;39(4):1007-1014. doi: 10.1007/s10067-020-04969-w. Epub 2020 Feb 15.

Abstract

Big data analytics and processing through artificial intelligence (AI) are increasingly being used in the health sector. This includes both clinical and research settings, and newly in specialties like rheumatology. It is, however, important to consider how these new methodologies are used, and particularly the sensitivities associated with personal information. Based on current applications in rheumatology, this article provides a narrative review of the bioethical perspectives of big data. It presents examples of databases, data analytic methods, and AI in this specialty to address four main ethical issues: privacy and confidentiality, informed consent, the impact on the medical profession, and justice. The use of big data and AI processing in healthcare has great potential to improve the quality of clinical care, including through better diagnosis, treatment, and prognosis. They may also increase patient and societal participation and engagement in healthcare and research. Developing these methodologies and using the information generated from them in line with ethical standards could positively affect the design of global health policies and introduce a new phase in the democratization of health.Key Points• Current applications of big data, data analytics, and AI in rheumatology-including registries, machine learning algorithms, and consumer-facing platforms-raise issues in four main bioethical areas: privacy and confidentiality, informed consent, the impact on the medical profession, and justice.• Bioethical concerns about rheumatology registries require careful consideration of privacy provisions, set within the context of local, national, and regional law.• Machine learning and big data aid diagnosis, treatment, and prognosis, but the final decision about the use of information from algorithms should be left to rheumatology specialists to maintain the promise of fiduciary obligations in the physician-patient relationship.• International collaboration in big data projects and increased patient engagement could be ways to counteract health inequalities in the practice of rheumatology, even on a global scale.

摘要

大数据分析和人工智能 (AI) 处理在医疗保健领域的应用日益广泛。这包括临床和研究环境,以及像风湿病学这样的新领域。然而,重要的是要考虑这些新方法的使用方式,特别是与个人信息相关的敏感性。基于风湿病学的当前应用,本文对大数据的生物伦理观点进行了叙述性综述。它介绍了该专业中数据库、数据分析方法和人工智能的示例,以解决四个主要的伦理问题:隐私和保密性、知情同意、对医疗行业的影响以及公正。在医疗保健中使用大数据和人工智能处理有很大的潜力可以提高临床护理的质量,包括通过更好的诊断、治疗和预后。它们还可以增加患者和社会参与医疗保健和研究的机会。按照伦理标准开发这些方法并使用从中生成的信息可以积极影响全球卫生政策的设计,并引入卫生民主化的新阶段。

关键点

• 风湿病学中大数据、数据分析和 AI 的当前应用——包括注册、机器学习算法和面向消费者的平台——引发了隐私和保密性、知情同意、对医疗行业的影响以及公正等四个主要生物伦理领域的问题。

• 风湿病学注册中心的生物伦理问题需要仔细考虑隐私规定,将其置于当地、国家和地区法律的背景下。

• 机器学习和大数据有助于诊断、治疗和预后,但应将最终决定算法信息的使用留给风湿病专家,以保持医患关系中的受托义务承诺。

• 大数据项目的国际合作和增加患者参与度可能是在风湿病学实践中克服健康不平等的方式,即使是在全球范围内。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验