Suppr超能文献

基于可解释树模型的航海因素和机动性因素对船舶轴功率影响的归因分析

Feature Attribution Analysis to Quantify the Impact of Oceanographic and Maneuverability Factors on Vessel Shaft Power Using Explainable Tree-Based Model.

机构信息

Korea Marine Equipment Research Institute, Busan 49111, Republic of Korea.

Department of Industrial and Data Engineering, Major in Industrial Data Science and Engineering, Pukyong National University, Busan 48513, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jan 17;23(3):1072. doi: 10.3390/s23031072.

Abstract

A vessel sails above the ocean against sea resistance, such as waves, wind, and currents on the ocean surface. Concerning the energy efficiency issue in the marine ecosystem, assigning the right magnitude of shaft power to the propeller system that is needed to move the ship during its operations can be a contributive study. To provide both desired maneuverability and economic factors related to the vessel's functionality, this research studied the shaft power utilization of a factual vessel operational data of a general cargo ship recorded during 16 months of voyage. A machine learning-based prediction model that is developed using Random Forest Regressor achieved a 0.95 coefficient of determination considering the oceanographic factors and additional maneuver settings from the noon report data as the model's predictors. To better understand the learning process of the prediction model, this study specifically implemented the SHapley Additive exPlanations (SHAP) method to disclose the contribution of each predictor to the prediction results. The individualized attributions of each important feature affecting the prediction results are presented.

摘要

船舶在海洋上航行,会受到海面波浪、风和海流等海洋阻力的影响。就海洋生态系统的能源效率问题而言,为船舶在运营过程中移动所需的螺旋桨系统分配适当的轴功率可以是一项有益的研究。为了提供所需的机动性和与船舶功能相关的经济因素,本研究使用随机森林回归器开发了一种基于机器学习的预测模型,该模型考虑了航海因素和从中午报告数据中提取的附加操纵设置作为模型的预测器,实现了 0.95 的确定系数。为了更好地理解预测模型的学习过程,本研究特别实施了 SHapley Additive exPlanations (SHAP) 方法来揭示每个预测器对预测结果的贡献。呈现了影响预测结果的每个重要特征的个性化归因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13a6/9920944/6ed3fed41eb6/sensors-23-01072-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验