Suppr超能文献

老年原发性高血压患者发生急性缺血性脑卒中风险的预测模型的建立与验证。

Development and validation of a model to estimate the risk of acute ischemic stroke in geriatric patients with primary hypertension.

机构信息

Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, No.57, South of Renming Road, Zhanjiang, Guangdong, 524001, People's Republic of China.

Department of General Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.

出版信息

BMC Geriatr. 2021 Aug 9;21(1):458. doi: 10.1186/s12877-021-02392-7.

Abstract

OBJECTIVES

This study aimed to construct and validate a prediction model of acute ischemic stroke in geriatric patients with primary hypertension.

METHODS

This retrospective file review collected information on 1367 geriatric patients diagnosed with primary hypertension and with and without acute ischemic stroke between October 2018 and May 2020. The study cohort was randomly divided into a training set and a testing set at a ratio of 70 to 30%. A total of 15 clinical indicators were assessed using the chi-square test and then multivariable logistic regression analysis to develop the prediction model. We employed the area under the curve (AUC) and calibration curves to assess the performance of the model and a nomogram for visualization. Internal verification by bootstrap resampling (1000 times) and external verification with the independent testing set determined the accuracy of the model. Finally, this model was compared with four machine learning algorithms to identify the most effective method for predicting the risk of stroke.

RESULTS

The prediction model identified six variables (smoking, alcohol abuse, blood pressure management, stroke history, diabetes, and carotid artery stenosis). The AUC was 0.736 in the training set and 0.730 and 0.725 after resampling and in the external verification, respectively. The calibration curve illustrated a close overlap between the predicted and actual diagnosis of stroke in both the training set and testing validation. The multivariable logistic regression analysis and support vector machine with radial basis function kernel were the best models with an AUC of 0.710.

CONCLUSION

The prediction model using multiple logistic regression analysis has considerable accuracy and can be visualized in a nomogram, which is convenient for its clinical application.

摘要

目的

本研究旨在构建和验证一个针对原发性高血压老年患者急性缺血性脑卒中的预测模型。

方法

本回顾性病历研究收集了 2018 年 10 月至 2020 年 5 月期间诊断为原发性高血压且有或无急性缺血性脑卒中的 1367 例老年患者的信息。研究队列按 70:30 的比例随机分为训练集和测试集。使用卡方检验和多变量逻辑回归分析评估了 15 项临床指标,以建立预测模型。我们采用曲线下面积(AUC)和校准曲线来评估模型的性能,并通过列线图进行可视化。通过自举重采样(1000 次)进行内部验证和使用独立测试集进行外部验证,确定了模型的准确性。最后,我们将该模型与四种机器学习算法进行比较,以确定预测中风风险的最有效方法。

结果

该预测模型确定了 6 个变量(吸烟、酗酒、血压管理、脑卒中史、糖尿病和颈动脉狭窄)。在训练集中,AUC 为 0.736,重采样后和外部验证中分别为 0.730 和 0.725。校准曲线表明,在训练集和测试验证中,预测和实际的脑卒中诊断之间存在紧密重叠。多变量逻辑回归分析和支持向量机的径向基函数核是 AUC 最高的两种模型,分别为 0.710。

结论

使用多变量逻辑回归分析的预测模型具有较高的准确性,并且可以通过列线图进行可视化,便于临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ea/8353783/e0909a696e5c/12877_2021_2392_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验