Suppr超能文献

通过自适应密集子图发现提取脑疾病相关的连接组子图。

Extracting brain disease-related connectome subgraphs by adaptive dense subgraph discovery.

作者信息

Wu Qiong, Huang Xiaoqi, Culbreth Adam J, Waltz James A, Hong L Elliot, Chen Shuo

机构信息

Department of Mathematics, University of Maryland, College Park, Maryland, USA.

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Biometrics. 2022 Dec;78(4):1566-1578. doi: 10.1111/biom.13537. Epub 2021 Aug 22.

Abstract

Group-level brain connectome analysis has attracted increasing interest in neuropsychiatric research with the goal of identifying connectomic subnetworks (subgraphs) that are systematically associated with brain disorders. However, extracting disease-related subnetworks from the whole brain connectome has been challenging, because no prior knowledge is available regarding the sizes and locations of the subnetworks. In addition, neuroimaging data are often mixed with substantial noise that can further obscure informative subnetwork detection. We propose a likelihood-based adaptive dense subgraph discovery (ADSD) model to extract disease-related subgraphs from the group-level whole brain connectome data. Our method is robust to both false positive and false negative errors of edge-wise inference and thus can lead to a more accurate discovery of latent disease-related connectomic subnetworks. We develop computationally efficient algorithms to implement the novel ADSD objective function and derive theoretical results to guarantee the convergence properties. We apply the proposed approach to a brain fMRI study for schizophrenia research and identify well-organized and biologically meaningful subnetworks that exhibit schizophrenia-related salience network centered connectivity abnormality. Analysis of synthetic data also demonstrates the superior performance of the ADSD method for latent subnetwork detection in comparison with existing methods in various settings.

摘要

在神经精神疾病研究中,组水平脑连接组分析越来越受到关注,其目的是识别与脑部疾病系统相关的连接组子网(子图)。然而,从全脑连接组中提取与疾病相关的子网一直具有挑战性,因为关于子网的大小和位置没有先验知识。此外,神经影像数据常常混杂着大量噪声,这会进一步模糊信息子网的检测。我们提出一种基于似然性的自适应密集子图发现(ADSD)模型,用于从组水平全脑连接组数据中提取与疾病相关的子图。我们的方法对边推断中的假阳性和假阴性错误均具有鲁棒性,因此能够更准确地发现潜在的与疾病相关的连接组子网。我们开发了计算效率高的算法来实现新颖的ADSD目标函数,并推导理论结果以保证收敛性质。我们将所提出的方法应用于一项针对精神分裂症研究的脑功能磁共振成像(fMRI)研究中,识别出组织良好且具有生物学意义的子网,这些子网表现出以精神分裂症相关显著性网络为中心的连接异常。对合成数据的分析也表明,与各种设置下的现有方法相比,ADSD方法在潜在子网检测方面具有卓越性能。

相似文献

6
NBS-Predict: A prediction-based extension of the network-based statistic.NBS-Predict:基于网络统计的预测扩展。
Neuroimage. 2021 Dec 1;244:118625. doi: 10.1016/j.neuroimage.2021.118625. Epub 2021 Oct 2.
8
9
Stable Overlapping Replicator Dynamics for Brain Community Detection.用于脑社区检测的稳定重叠复制者动力学
IEEE Trans Med Imaging. 2016 Feb;35(2):529-38. doi: 10.1109/TMI.2015.2480864. Epub 2015 Sep 22.

引用本文的文献

本文引用的文献

1
Bayesian Joint Modeling of Multiple Brain Functional Networks.多个脑功能网络的贝叶斯联合建模
J Am Stat Assoc. 2021;116(534):518-530. doi: 10.1080/01621459.2020.1796357. Epub 2020 Sep 1.
4
A difference degree test for comparing brain networks.比较脑网络的差异度检验。
Hum Brain Mapp. 2019 Oct 15;40(15):4518-4536. doi: 10.1002/hbm.24718. Epub 2019 Jul 26.
7
Estimating dynamic brain functional networks using multi-subject fMRI data.利用多主体 fMRI 数据估计动态脑功能网络。
Neuroimage. 2018 Dec;183:635-649. doi: 10.1016/j.neuroimage.2018.07.045. Epub 2018 Jul 24.
10
Salience processing and insular cortical function and dysfunction.突显加工与脑岛皮质的功能和障碍。
Nat Rev Neurosci. 2015 Jan;16(1):55-61. doi: 10.1038/nrn3857. Epub 2014 Nov 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验