Suppr超能文献

一种用于分析多任务全脑网络数据的混合建模框架。

A mixed-modeling framework for analyzing multitask whole-brain network data.

作者信息

Simpson Sean L, Bahrami Mohsen, Laurienti Paul J

机构信息

Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA.

出版信息

Netw Neurosci. 2019 Feb 1;3(2):307-324. doi: 10.1162/netn_a_00065. eCollection 2019.

Abstract

The emerging area of brain network analysis considers the brain as a system, providing profound insight into links between system-level properties and health outcomes. Network science has facilitated these analyses and our understanding of how the brain is organized. While network science has catalyzed a paradigmatic shift in neuroscience, methods for statistically analyzing networks have lagged behind. To address this for cross-sectional network data, we developed a mixed-modeling framework that enables quantifying the relationship between phenotype and connectivity patterns, predicting connectivity structure based on phenotype, simulating networks to gain a better understanding of topological variability, and thresholding individual networks leveraging group information. Here we extend this comprehensive approach to enable studying system-level brain properties across multiple tasks. We focus on rest-to-task network changes, but this extension is equally applicable to the assessment of network changes for any repeated task paradigm. Our approach allows (a) assessing population network differences in changes between tasks, and how these changes relate to health outcomes; (b) assessing individual variability in network differences in changes between tasks, and how this variability relates to health outcomes; and (c) deriving more accurate and precise estimates of the relationships between phenotype and health outcomes within a given task.

摘要

脑网络分析这一新兴领域将大脑视为一个系统,为深入了解系统层面特性与健康结果之间的联系提供了深刻见解。网络科学推动了这些分析以及我们对大脑组织方式的理解。虽然网络科学在神经科学领域引发了范式转变,但网络的统计分析方法却滞后了。为解决横断面网络数据的这一问题,我们开发了一个混合建模框架,该框架能够量化表型与连接模式之间的关系,基于表型预测连接结构,模拟网络以更好地理解拓扑变异性,并利用群体信息对个体网络进行阈值处理。在此,我们扩展这一综合方法以研究跨多个任务的系统层面大脑特性。我们关注从静息态到任务态的网络变化,但这种扩展同样适用于评估任何重复任务范式下的网络变化。我们的方法能够:(a)评估任务间变化中的群体网络差异,以及这些变化如何与健康结果相关;(b)评估任务间变化中网络差异的个体变异性,以及这种变异性如何与健康结果相关;(c)在给定任务中更准确、精确地估计表型与健康结果之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047f/6370463/765e5b6295d9/netn-03-307-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验