Suppr超能文献

WIND 转录因子在拟南芥的创伤诱导愈伤组织形成、血管再连接和防御反应中发挥协调作用。

WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis.

机构信息

RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.

JST, PRESTO, Kawaguchi, 332-0012, Japan.

出版信息

New Phytol. 2021 Oct;232(2):734-752. doi: 10.1111/nph.17594. Epub 2021 Aug 10.

Abstract

Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.

摘要

创伤触发新器官发生、血管再连接和防御反应,但创伤应激如何引发如此多样化的生理反应尚不清楚。我们之前鉴定出 AP2/ERF 转录因子 WOUND INDUCED DEDIFFERENTIATION1(WIND1)及其同源物 WIND2、WIND3 和 WIND4,作为拟南芥创伤诱导细胞重编程的关键调节剂。为了了解 WIND 转录因子如何促进下游事件,我们在 WIND1 诱导后进行了时间进程转录组分析。我们观察到 WIND1 诱导的基因与涉及细胞重编程、血管形成和病原体反应的基因之间存在显著重叠。我们证明 WIND 转录因子诱导几个重编程基因以促进创伤部位的愈伤组织形成。此外,我们还表明 WIND 转录因子促进木质部形成、血管再连接和对丁香假单胞菌 pv.番茄 DC3000 的抗性。这些结果表明,WIND 转录因子通过促进动态转录改变作为创伤诱导反应的关键调节剂发挥作用。本研究为植物在受伤后如何控制多种生理反应提供了更深入的机制见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad2/9291923/8fa133555a57/NPH-232-734-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验