Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.
J Am Chem Soc. 2021 Aug 25;143(33):13299-13313. doi: 10.1021/jacs.1c06339. Epub 2021 Aug 10.
Previous studies have shown that racemic mixtures of 40- and 42-residue amyloid-β peptides (d,l-Aβ40 and d,l-Aβ42) form amyloid fibrils with accelerated kinetics and enhanced stability relative to their homochiral counterparts (l-Aβ40 and l-Aβ42), suggesting a "chiral inactivation" approach to abrogating the neurotoxicity of Aβ oligomers (Aβ-CI). Here we report a structural study of d,l-Aβ40 fibrils, using electron microscopy, solid-state nuclear magnetic resonance (NMR), and density functional theory (DFT) calculations. Two- and three-dimensional solid-state NMR spectra indicate molecular conformations in d,l-Aβ40 fibrils that resemble those in known l-Aβ40 fibril structures. However, quantitative measurements of C-C and N-C distances in selectively labeled d,l-Aβ40 fibril samples indicate a qualitatively different supramolecular structure. While cross-β structures in mature l-Aβ40 fibrils are comprised of in-register, parallel β-sheets, our data indicate antiparallel β-sheets in d,l-Aβ40 fibrils, with alternation of d and l molecules along the fibril growth direction, i.e., antiparallel "rippled sheet" structures. The solid-state NMR data suggest the coexistence of d,l-Aβ40 fibril polymorphs with three different registries of intermolecular hydrogen bonds within the antiparallel rippled sheets. DFT calculations support an energetic preference for antiparallel alignments of the β-strand segments identified by solid-state NMR. These results provide insight into the structural basis for Aβ-CI and establish the importance of rippled sheets in self-assembly of full-length, naturally occurring amyloidogenic peptides.
先前的研究表明,40 位和 42 位残基淀粉样β肽(d,l-Aβ40 和 d,l-Aβ42)的外消旋混合物相对于其同手性对应物(l-Aβ40 和 l-Aβ42)形成淀粉样纤维具有加速的动力学和增强的稳定性,这表明“手性失活”方法可以消除 Aβ 低聚物(Aβ-CI)的神经毒性。在这里,我们使用电子显微镜、固态核磁共振(NMR)和密度泛函理论(DFT)计算报告了 d,l-Aβ40 纤维的结构研究。二维和三维固态 NMR 谱表明 d,l-Aβ40 纤维中的分子构象类似于已知的 l-Aβ40 纤维结构。然而,在选择性标记的 d,l-Aβ40 纤维样品中定量测量 C-C 和 N-C 距离表明存在不同的超分子结构。虽然成熟的 l-Aβ40 纤维中的交叉-β结构由有序、平行的β-折叠组成,但我们的数据表明 d,l-Aβ40 纤维中的β-折叠为反平行β-折叠,在纤维生长方向上交替出现 d 和 l 分子,即反平行的“波纹片”结构。固态 NMR 数据表明,d,l-Aβ40 纤维存在三种不同的氢键排列方式,其纤维中的同手性纤维具有不同的构象。DFT 计算支持固态 NMR 鉴定的β-折叠片段的反平行排列的能量偏好。这些结果为 Aβ-CI 的结构基础提供了深入的了解,并确立了波纹片在全长天然淀粉样肽自组装中的重要性。