Suppr超能文献

利用商用设备增强现实世界中的跌倒检测:一项系统研究。

Enhancing Real-World Fall Detection Using Commodity Devices: A Systematic Study.

作者信息

Yasmin Awatif, Mahmud Tarek, Haque Syed Tousiful, Alamgeer Sana, Ngu Anne H H

机构信息

Department of Computer Science, Texas State University, San Marcos, TX 78666, USA.

Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363, USA.

出版信息

Sensors (Basel). 2025 Aug 23;25(17):5249. doi: 10.3390/s25175249.

Abstract

The widespread adoption of smartphones and smartwatches has enabled non-intrusive fall detection through built-in sensors and on-device computation. While these devices are widely used by older adults, existing systems still struggle to accurately detect soft falls in real-world settings. There is a notable drop in performance when fall-detection models trained offline on labeled accelerometer data are deployed and tested in real-world conditions using streaming, real-time data. To address this, our experimental study investigates whether incorporating additional sensor modalities, specifically gyroscope data with accelerometer data from wrist and hip locations, can help bridge this performance gap. Through systematic experimentation, we demonstrated that combining accelerometer data from the hip and the wrist yields a model capable of achieving an F1-score of 88% using a Transformer-based neural network in offline evaluation, which is an improvement of 8% over a model trained solely on wrist accelerometer data. However, when it is deployed in an uncontrolled home environment with streaming real-time data, this model produced a high number of false positives. To address this, we retrained the model using feedback data that comprised both false positives and true positives and was collected from ten participants during real-time testing. This refinement yielded an F1-sore of 92% and significantly reduced false positives while maintaining comparable accuracy in detecting true falls in real-world settings. Furthermore, we demonstrated that the improved model generalizes well to older adults' movement patterns, with minimal false-positive detections.

摘要

智能手机和智能手表的广泛应用使得通过内置传感器和设备上的计算进行非侵入式跌倒检测成为可能。虽然这些设备在老年人中广泛使用,但现有系统在现实环境中仍难以准确检测到轻微跌倒。当在标记的加速度计数据上进行离线训练的跌倒检测模型使用流式实时数据在现实条件下进行部署和测试时,性能会显著下降。为了解决这个问题,我们的实验研究调查了纳入额外的传感器模态,特别是来自手腕和臀部位置的加速度计数据与陀螺仪数据,是否有助于弥合这一性能差距。通过系统的实验,我们证明,在离线评估中,将来自臀部和手腕的加速度计数据相结合,使用基于Transformer的神经网络能够实现一个F1分数为88%的模型,这比仅在手腕加速度计数据上训练的模型提高了8%。然而,当该模型在具有流式实时数据的不受控制的家庭环境中部署时,产生了大量误报。为了解决这个问题,我们使用在实时测试期间从十名参与者收集的包含误报和真阳性的反馈数据对模型进行了重新训练。这种改进产生了92%的F1分数,并显著减少了误报,同时在现实环境中检测真跌倒时保持了相当的准确性。此外,我们证明改进后的模型能够很好地推广到老年人的运动模式,误报检测最少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b67/12431052/312f1c7c31dc/sensors-25-05249-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验