Service de physique médicale et Axe Oncologie du Centre de recherche, CHU de Québec-Université Laval, Canada.
Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Canada.
Phys Med Biol. 2021 Aug 27;66(17). doi: 10.1088/1361-6560/ac1ca1.
Plastic scintillation detectors are increasingly used to measure dose distributions in the context of radiotherapy treatments. Their water-equivalence, real-time response and high spatial resolution distinguish them from traditional detectors, especially in complex irradiation geometries. Their range of applications could be further extended by embedding scintillators in a deformable matrix mimicking anatomical changes. In this work, we characterized signal variations arising from the translation and rotation of scintillating fibers with respect to a camera. Corrections are proposed using stereo vision techniques and two sCMOS complementing a CCD camera. The study was extended to the case of a prototype real-time deformable dosimeter comprising an array of 19 scintillating fibers. The signal to angle relationship follows a gaussian distribution (FWHM = 52°) whereas the intensity variation from radial displacement follows the inverse square law. Tracking the position and angle of the fibers enabled the correction of these spatial dependencies. The detecting system provides an accuracy and precision of respectively 0.08 mm and 0.3 mm on the position detection. This resulted in an uncertainty of 2° on the angle measurement. Displacing the dosimeter by ±3 cm in depth resulted in relative intensities of 100 ± 10% (mean ± standard deviation) to the reference position. Applying corrections reduced the variations thus resulting in relative intensities of 100 ± 1%. Similarly, for lateral displacements of ±3 cm, intensities went from 98 ± 3% to 100 ± 1% after the correction. Therefore, accurate correction of the signal collected by a camera imaging the output of scintillating elements in a 3D volume is possible. This work paves the way to the development of real-time scintillator-based deformable dosimeters.
塑料闪烁探测器越来越多地用于测量放射治疗中的剂量分布。它们的水等效性、实时响应和高空间分辨率使其有别于传统探测器,尤其是在复杂的照射几何形状下。通过将闪烁体嵌入模仿解剖变化的可变形基质中,可以进一步扩展它们的应用范围。在这项工作中,我们对闪烁纤维相对于相机的平移和旋转引起的信号变化进行了特征描述。通过立体视觉技术和两个互补 CCD 相机的 sCMOS 提出了校正方法。研究扩展到了由 19 根闪烁纤维组成的实时可变形剂量计原型的情况。信号与角度的关系遵循高斯分布(FWHM = 52°),而径向位移的强度变化遵循平方反比定律。跟踪纤维的位置和角度可以校正这些空间相关性。检测系统在位置检测方面提供了 0.08 毫米的精度和 0.3 毫米的重复性。这导致角度测量的不确定度为 2°。将剂量计在深度方向上移动±3 厘米会导致相对于参考位置的相对强度为 100 ± 10%(平均值±标准偏差)。应用校正可以减少变化,从而导致相对强度为 100 ± 1%。类似地,对于±3 厘米的横向位移,校正后强度从 98 ± 3%变为 100 ± 1%。因此,可以对相机成像的 3D 体积中闪烁元件的输出信号进行准确校正。这项工作为开发实时闪烁体基可变形剂量计铺平了道路。