Suppr超能文献

机械牵张促进多能干细胞源性心肌细胞成熟的最新进展。

Recent Advances in Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Promoted by Mechanical Stretch.

机构信息

Capital Medical University, Beijing, China (mainland).

Department of Ultrasound, Third Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).

出版信息

Med Sci Monit. 2021 Aug 12;27:e931063. doi: 10.12659/MSM.931063.

Abstract

Stem cells have significant potential use in tissue regeneration, especially for treating cardiac diseases because of their multi-directional differentiation capability. By mimicking the in vivo physiological environment of native cardiomyocytes during their development and maturation, researchers have been able to induce pluripotent stem cell-derived cardiomyocytes (PSC-CMs) at high purity. However, the phenotype of these PSC-CMs is immature compared with that of adult cardiomyocytes. Various strategies have been explored to improve the maturity of PSC-CMs, such as long-term culturing, mechanical stimuli, chemical stimuli, and combinations of these strategies. Among these strategies, mechanical stretch as a key mechanical stimulus plays an important role in PSC-CM maturation. In this review, the optimal parameters of mechanical stretch, the effects of mechanical stretch on maturation of PSC-CMs, underlying molecular mechanisms as well as existing problems are discussed. Mechanical stretch is a powerful approach to promote the maturation of SC-CMs in terms of morphology, structure, and functionality. Nonetheless, further research efforts are needed to reach a satisfactory standard for clinical applications of PSC-CMs in treating cardiac diseases.

摘要

干细胞在组织再生中具有重要的潜在用途,特别是在治疗心脏病方面,因为它们具有多向分化的能力。通过模拟体内生理环境在其发育和成熟过程中,研究人员能够以高纯度诱导多能干细胞衍生的心肌细胞(PSC-CM)。然而,与成年心肌细胞相比,这些 PSC-CM 的表型不成熟。已经探索了各种策略来提高 PSC-CM 的成熟度,例如长期培养、机械刺激、化学刺激以及这些策略的组合。在这些策略中,机械拉伸作为一种关键的机械刺激,在 PSC-CM 成熟过程中起着重要作用。在这篇综述中,讨论了机械拉伸的最佳参数、机械拉伸对 PSC-CM 成熟的影响、潜在的分子机制以及存在的问题。机械拉伸是一种促进 SC-CM 在形态、结构和功能上成熟的有效方法。尽管如此,仍需要进一步的研究努力,以达到 PSC-CM 在治疗心脏病方面临床应用的满意标准。

相似文献

3
Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine.
Nat Rev Cardiol. 2020 Jun;17(6):341-359. doi: 10.1038/s41569-019-0331-x. Epub 2020 Feb 3.
5
Heart regeneration using pluripotent stem cells.
J Cardiol. 2020 Nov;76(5):459-463. doi: 10.1016/j.jjcc.2020.03.013. Epub 2020 Jul 18.
6
MicroRNA-mediated maturation of human pluripotent stem cell-derived cardiomyocytes: Towards a better model for cardiotoxicity?
Food Chem Toxicol. 2016 Dec;98(Pt A):17-24. doi: 10.1016/j.fct.2016.05.025. Epub 2016 Jun 3.
7
Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes.
Methods. 2016 May 15;101:21-6. doi: 10.1016/j.ymeth.2015.11.005. Epub 2015 Nov 4.
8
Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes: a Critical Step for Drug Development and Cell Therapy.
J Cardiovasc Transl Res. 2018 Oct;11(5):375-392. doi: 10.1007/s12265-018-9801-5. Epub 2018 Mar 19.
9
Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes.
Theranostics. 2017 May 26;7(7):2078-2091. doi: 10.7150/thno.19390. eCollection 2017.

引用本文的文献

本文引用的文献

1
A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine.
Stem Cell Rev Rep. 2021 Jun;17(3):748-776. doi: 10.1007/s12015-020-10061-2. Epub 2020 Oct 23.
2
Bioreactor Platform for Biomimetic Culture and Monitoring of the Mechanical Response of Engineered Models of Cardiac Tissue.
Front Bioeng Biotechnol. 2020 Jul 14;8:733. doi: 10.3389/fbioe.2020.00733. eCollection 2020.
3
Cardiomyocyte Maturation: New Phase in Development.
Circ Res. 2020 Apr 10;126(8):1086-1106. doi: 10.1161/CIRCRESAHA.119.315862. Epub 2020 Apr 9.
4
Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes.
Biomech Model Mechanobiol. 2020 Feb;19(1):291-303. doi: 10.1007/s10237-019-01211-8. Epub 2019 Aug 23.
5
Maturation of three-dimensional, hiPSC-derived cardiomyocyte spheroids utilizing cyclic, uniaxial stretch and electrical stimulation.
PLoS One. 2019 Jul 5;14(7):e0219442. doi: 10.1371/journal.pone.0219442. eCollection 2019.
6
Cyclic stretch increases mitochondrial biogenesis in a cardiac cell line.
Biochem Biophys Res Commun. 2018 Nov 2;505(3):768-774. doi: 10.1016/j.bbrc.2018.10.003. Epub 2018 Oct 5.
7
Cyclic biaxial tensile strain promotes bone marrow-derived mesenchymal stem cells to differentiate into cardiomyocyte-like cells by miRNA-27a.
Int J Biochem Cell Biol. 2018 Jun;99:125-132. doi: 10.1016/j.biocel.2018.04.004. Epub 2018 Apr 5.
8
Advanced maturation of human cardiac tissue grown from pluripotent stem cells.
Nature. 2018 Apr;556(7700):239-243. doi: 10.1038/s41586-018-0016-3. Epub 2018 Apr 4.
10
Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes.
Stem Cell Reports. 2018 Mar 13;10(3):794-807. doi: 10.1016/j.stemcr.2018.01.016. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验