Suppr超能文献

多功能丝素蛋白/碳纳米纤维支架用于诱导多能干细胞的体外心肌生成分化和模拟心脏运动的能量收集。

Multifunctional Silk Fibroin/Carbon Nanofiber Scaffolds for In Vitro Cardiomyogenic Differentiation of Induced Pluripotent Stem Cells and Energy Harvesting from Simulated Cardiac Motion.

机构信息

Department of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey.

Institute of Biomedical Engineering, Boğaziçi University, 34684 İstanbul, Turkey.

出版信息

ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42271-42283. doi: 10.1021/acsami.3c08601. Epub 2023 Aug 29.

Abstract

In this proof-of-concept study, cardiomyogenic differentiation of induced pluripotent stem cells (iPSCs) is combined with energy harvesting from simulated cardiac motion in vitro. To achieve this, silk fibroin (SF)-based porous scaffolds are designed to mimic the mechanical and physical properties of cardiac tissue and used as triboelectric nanogenerator (TENG) electrodes. The load-carrying mechanism, β-sheet content, degradation characteristics, and iPSC interactions of the scaffolds are observed to be interrelated and regulated by their pore architecture. The SF scaffolds with a pore size of 379 ± 34 μm, a porosity of 79 ± 1%, and a pore interconnectivity of 67 ± 1% upregulated the expression of cardiac-specific gene markers TNNT2 and NKX2.5 from iPSCs. Incorporating carbon nanofibers (CNFs) enhances the elastic modulus of the scaffolds to 45 ± 3 kPa and results in an electrical conductivity of 0.021 ± 0.006 S/cm. The SF and SF/CNF scaffolds are used as conjugate TENG electrodes and generate a maximum power output of 0.37 × 10 mW/m, with an open-circuit voltage and a short circuit current of 0.46 V and 4.5 nA, respectively, under simulated cardiac motion. A novel approach is demonstrated for fabricating scaffold-based cardiac patches that can serve as tissue scaffolds and simultaneously allow energy harvesting.

摘要

在这项概念验证研究中,将诱导多能干细胞(iPSCs)的心肌发生分化与体外模拟心脏运动的能量收集相结合。为此,设计了基于丝素蛋白(SF)的多孔支架,以模拟心脏组织的机械和物理性能,并用作摩擦纳米发电机(TENG)的电极。观察到支架的承载机制、β-折叠含量、降解特性和 iPSC 相互作用与其孔结构相关且受其调控。孔径为 379 ± 34 μm、孔隙率为 79 ± 1%、孔连通性为 67 ± 1%的 SF 支架可上调 iPSCs 中心脏特异性基因标志物 TNNT2 和 NKX2.5 的表达。掺入碳纳米纤维(CNF)可将支架的弹性模量提高到 45 ± 3 kPa,并使电导率提高到 0.021 ± 0.006 S/cm。SF 和 SF/CNF 支架用作共轭 TENG 电极,在模拟心脏运动下可产生 0.37 × 10 mW/m 的最大功率输出,开路电压和短路电流分别为 0.46 V 和 4.5 nA。展示了一种制造基于支架的心脏贴片的新方法,这些贴片既可用作组织支架,又可同时进行能量收集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cce4/10510024/ccd0d73a4919/am3c08601_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验