Meskhidze Nicholas, Sutherland Bethany, Ling Xinyi, Dawson Kyle, Johnson Matthew S, Henderson Barron, Hostetler Chris A, Ferrare Richard A
North Carolina State University, Raleigh, NC.
Bayer Crop Sciences, Chesterfield, MO.
Atmos Environ (1994). 2021 Apr 1;250. doi: 10.1016/j.atmosenv.2021.118250.
Improved characterization of ambient PM mass concentration and chemical speciation is a topic of interest in air quality and climate sciences. Over the past decades, considerable efforts have been made to improve ground-level PM using remotely sensed data. Here we present two new approaches for estimating atmospheric PM and chemical composition based on the High Spectral Resolution Lidar (HSRL)-retrieved aerosol extinction values and types and Creating Aerosol Types from Chemistry (CATCH)-derived aerosol chemical composition. The first methodology (CMAQ-HSRL-CH) improves EPA's Community Multiscale Air Quality (CMAQ) predictions by applying variable scaling factors derived using remotely-sensed information about aerosol vertical distribution and types and the CATCH algorithm. The second methodology (HSRL-CH) does not require regional model runs and can provide atmospheric PM mass concentration and chemical speciation using only the remotely sensed data and the CATCH algorithm. The resulting PM concentrations and chemical speciation derived for NASA DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) Baltimore-Washington, D.C. Corridor (BWC) Campaign (2011) are compared to surface measurements from EPA's Air Quality Systems (AQS) network. The analysis shows that the CMAQ-HSRL-CH method leads to considerable improvement of CMAQ's predicted PM concentrations (R value increased from 0.37 to 0.63, the root mean square error (RMSE) was reduced from 11.9 to 7.2 μg m, and the normalized mean bias (NMB) was lowered from -46.0 to 4.6%). The HSRL-CH method showed statistics (R=0.75, RMSE=8.6 μgm, and NMB=24.0%), which were better than the CMAQ prediction of PM alone and analogous to CMAQ-HSRL-CH. In addition to mass concentration, HSRL-CH can also provide aerosol chemical composition without specific model simulations. We expect that the HSRL-CH method will be able to make reliable estimates of PM concentration and chemical composition where HSRL data are available.
改善环境颗粒物质量浓度和化学形态的表征是空气质量和气候科学领域关注的一个话题。在过去几十年里,人们付出了巨大努力,利用遥感数据来改善地面颗粒物情况。在此,我们提出两种基于高光谱分辨率激光雷达(HSRL)反演的气溶胶消光值和类型以及化学衍生气溶胶类型(CATCH)得出的气溶胶化学成分来估算大气颗粒物及其化学组成的新方法。第一种方法(CMAQ-HSRL-CH)通过应用利用关于气溶胶垂直分布和类型的遥感信息以及CATCH算法得出的可变比例因子,改进了美国环保署的社区多尺度空气质量(CMAQ)预测。第二种方法(HSRL-CH)不需要进行区域模型运行,仅利用遥感数据和CATCH算法就能提供大气颗粒物质量浓度和化学形态。将为美国国家航空航天局的DISCOVER-AQ(从与空气质量相关的柱面和垂直分辨观测中获取地表状况信息)巴尔的摩-华盛顿特区走廊(BWC)活动(2011年)得出的颗粒物浓度和化学形态与美国环保署空气质量系统(AQS)网络的地面测量结果进行了比较。分析表明,CMAQ-HSRL-CH方法使CMAQ预测的颗粒物浓度有了显著改善(相关系数R值从0.37提高到0.63,均方根误差(RMSE)从11.9降低到7.2微克/立方米,归一化平均偏差(NMB)从-46.0%降低到4.6%)。HSRL-CH方法显示出的统计数据(R = 0.75,RMSE = 8.6微克/立方米,NMB = 24.0%)优于仅CMAQ对颗粒物的预测,且与CMAQ-HSRL-CH类似。除了质量浓度外,HSRL-CH还能在无需特定模型模拟的情况下提供气溶胶化学成分。我们预计,在有HSRL数据的地方,HSRL-CH方法将能够对颗粒物浓度和化学成分做出可靠估计。