Department of Electrical and Communication Eng., National University of Science and Tech, Muscat, Oman.
Research Scholar, Department of Computer Science Eng., Parul University, Vadodara, Gujarat 391760, India.
Comput Math Methods Med. 2021 Aug 1;2021:5524637. doi: 10.1155/2021/5524637. eCollection 2021.
The work proposes a computer-based diagnosis method (CBDM) to delineate and assess the corpus callosum (CC) segment from the 2-dimensional (2D) brain magnetic resonance images (MRI). The proposed CBDM consists of two parts: (1) preprocessing and (2) postprocessing sections. The preprocessing tools have a multithreshold technique with the chaotic cuckoo search (CCS) algorithm and a preferred threshold procedure. The postprocessing employs a delineation process for extracting the CC section. The proposed CBDM finally extracts the vital CC parameters, such as total brain area (TBA) and CC area (CCA) to classify the considered 2D MRI slices into the control and autism spectrum disorder (ASD) groups. This attempt considers the benchmark brain MRI database which includes ABIDE and MIDAS for the experimental investigation. The results obtained with ABIDE dataset are further confirmed against the fuzzy -means driven level set (FCM + LS) and multiphase level set (MLS) technique and the proposed CBDM with Shannon entropy along with active contour (SE + AC) presented improved result in comparison to the existing methodologies. Further, the performance of CBDM is confirmed on MIDAS and clinical dataset. The experimental outcomes approve that the proposed CBDM extracts the CC section from the 2D MR brain images that have higher accuracy compared to alternative techniques.
该工作提出了一种基于计算机的诊断方法 (CBDM),用于从二维 (2D) 脑磁共振图像 (MRI) 中描绘和评估胼胝体 (CC) 段。所提出的 CBDM 由两部分组成:(1)预处理部分和(2)后处理部分。预处理工具采用具有混沌布谷鸟搜索 (CCS) 算法和首选阈值过程的多阈值技术。后处理采用描绘过程来提取 CC 部分。所提出的 CBDM 最终提取重要的 CC 参数,例如总脑区 (TBA) 和 CC 区 (CCA),将考虑的 2D MRI 切片分为对照组和自闭症谱系障碍 (ASD) 组。该尝试考虑了基准脑 MRI 数据库,包括 ABIDE 和 MIDAS 进行实验研究。使用 ABIDE 数据集获得的结果进一步与模糊均值驱动水平集 (FCM + LS) 和多相水平集 (MLS) 技术以及具有 Shannon 熵的主动轮廓 (SE + AC) 进行了比较,与现有方法相比,所提出的 CBDM 具有改进的结果。此外,CBDM 在 MIDAS 和临床数据集上的性能也得到了验证。实验结果证实,与替代技术相比,所提出的 CBDM 从 2D MR 脑图像中提取 CC 部分具有更高的准确性。