Karn Prakash Kumar, Abdulla Waleed H
Department of Electrical, Computer and Software Engineering, University of Auckland, Auckland 1010, New Zealand.
Bioengineering (Basel). 2023 Mar 24;10(4):407. doi: 10.3390/bioengineering10040407.
Optical coherence tomography (OCT) is a noninvasive imaging technique that provides high-resolution cross-sectional retina images, enabling ophthalmologists to gather crucial information for diagnosing various retinal diseases. Despite its benefits, manual analysis of OCT images is time-consuming and heavily dependent on the personal experience of the analyst. This paper focuses on using machine learning to analyse OCT images in the clinical interpretation of retinal diseases. The complexity of understanding the biomarkers present in OCT images has been a challenge for many researchers, particularly those from nonclinical disciplines. This paper aims to provide an overview of the current state-of-the-art OCT image processing techniques, including image denoising and layer segmentation. It also highlights the potential of machine learning algorithms to automate the analysis of OCT images, reducing time consumption and improving diagnostic accuracy. Using machine learning in OCT image analysis can mitigate the limitations of manual analysis methods and provide a more reliable and objective approach to diagnosing retinal diseases. This paper will be of interest to ophthalmologists, researchers, and data scientists working in the field of retinal disease diagnosis and machine learning. By presenting the latest advancements in OCT image analysis using machine learning, this paper will contribute to the ongoing efforts to improve the diagnostic accuracy of retinal diseases.
光学相干断层扫描(OCT)是一种非侵入性成像技术,可提供高分辨率的视网膜横断面图像,使眼科医生能够收集用于诊断各种视网膜疾病的关键信息。尽管它有诸多优点,但对OCT图像进行人工分析既耗时,又严重依赖分析人员的个人经验。本文重点探讨在视网膜疾病的临床诊断中利用机器学习来分析OCT图像。理解OCT图像中存在的生物标志物的复杂性,一直是许多研究人员面临的挑战,尤其是那些来自非临床学科的研究人员。本文旨在概述当前最先进的OCT图像处理技术,包括图像去噪和层分割。它还强调了机器学习算法在自动化分析OCT图像方面的潜力,可减少时间消耗并提高诊断准确性。在OCT图像分析中使用机器学习可以减轻人工分析方法的局限性,并为诊断视网膜疾病提供一种更可靠、更客观的方法。本文将对从事视网膜疾病诊断和机器学习领域工作的眼科医生、研究人员和数据科学家具有参考价值。通过介绍使用机器学习进行OCT图像分析的最新进展,本文将为提高视网膜疾病诊断准确性的持续努力做出贡献。