Suppr超能文献

非言语社交感知:社交感知在视频非言语行为研究中能做什么及不能做什么。

Nonverbal Social Sensing: What Social Sensing Can and Cannot Do for the Study of Nonverbal Behavior From Video.

作者信息

Renier Laetitia Aurelie, Schmid Mast Marianne, Dael Nele, Kleinlogel Emmanuelle Patricia

机构信息

Department of Organizational Behavior - Faculty of Business and Economics (HEC), University of Lausanne, Lausanne, Switzerland.

出版信息

Front Psychol. 2021 Jul 27;12:606548. doi: 10.3389/fpsyg.2021.606548. eCollection 2021.

Abstract

The study of nonverbal behavior (NVB), and in particular kinesics (i.e., face and body motions), is typically seen as cost-intensive. However, the development of new technologies (e.g., ubiquitous sensing, computer vision, and algorithms) and approaches to study social behavior [i.e., social signal processing (SSP)] makes it possible to train algorithms to automatically code NVB, from action/motion units to inferences. Nonverbal social sensing refers to the use of these technologies and approaches for the study of kinesics based on video recordings. Nonverbal social sensing appears as an inspiring and encouraging approach to study NVB at reduced costs, making it a more attractive research field. However, does this promise hold? After presenting what nonverbal social sensing is and can do, we discussed the key challenges that researchers face when using nonverbal social sensing on video data. Although nonverbal social sensing is a promising tool, researchers need to be aware of the fact that algorithms might be as biased as humans when extracting NVB or that the automated NVB coding might remain context-dependent. We provided study examples to discuss these challenges and point to potential solutions.

摘要

对非语言行为(NVB)的研究,尤其是身势学(即面部和身体动作)的研究,通常被认为成本高昂。然而,新技术(如普适传感、计算机视觉和算法)以及研究社会行为的方法(即社会信号处理(SSP))的发展,使得训练算法自动对非语言行为进行编码成为可能,从动作/运动单元到推理。非语言社会传感是指利用这些技术和方法,基于视频记录来研究身势学。非语言社会传感似乎是一种以降低成本来研究非语言行为的鼓舞人心且令人振奋的方法,使其成为一个更具吸引力的研究领域。然而,这一承诺能否兑现呢?在介绍了非语言社会传感是什么以及能做什么之后,我们讨论了研究人员在对视频数据使用非语言社会传感时所面临的关键挑战。尽管非语言社会传感是一种很有前景的工具,但研究人员需要意识到,在提取非语言行为时算法可能会像人类一样存在偏差,或者自动的非语言行为编码可能仍然依赖于上下文。我们提供了研究实例来讨论这些挑战并指出潜在的解决方案。

相似文献

1
Nonverbal Social Sensing: What Social Sensing Can and Cannot Do for the Study of Nonverbal Behavior From Video.
Front Psychol. 2021 Jul 27;12:606548. doi: 10.3389/fpsyg.2021.606548. eCollection 2021.
2
Coding Body Language in Sports: The Nonverbal Behavior Coding System for Soccer Penalties.
J Sport Exerc Psychol. 2021 Apr 1;43(2):140-154. doi: 10.1123/jsep.2020-0066. Epub 2021 Mar 17.
3
Deciphering the secret code: a new methodology for the cross-cultural analysis of nonverbal behavior.
Behav Res Methods. 2008 Feb;40(1):269-77. doi: 10.3758/brm.40.1.269.
4
Predictive Validity of Thin-Slice Nonverbal Behavior from Social Interactions.
Pers Soc Psychol Bull. 2019 Jul;45(7):983-993. doi: 10.1177/0146167218802834. Epub 2018 Nov 7.
5
Nonverbal behavior during face-to-face social interaction in schizophrenia: a review.
J Nerv Ment Dis. 2014 Jan;202(1):47-54. doi: 10.1097/NMD.0000000000000031.
7
The Nonverbal Accommodation Analysis System (NAAS): initial application and evaluation.
Patient Educ Couns. 2011 Oct;85(1):33-9. doi: 10.1016/j.pec.2010.07.043. Epub 2010 Sep 20.
8
The nonverbal expression of power, status, and dominance.
Curr Opin Psychol. 2020 Jun;33:256-264. doi: 10.1016/j.copsyc.2019.12.004. Epub 2020 Jan 9.
9
Nonverbal Communication of Confidence in Soccer Referees: An Experimental Test of Darwin's Leakage Hypothesis.
J Sport Exerc Psychol. 2016 Dec;38(6):590-597. doi: 10.1123/jsep.2016-0192. Epub 2016 Dec 29.

引用本文的文献

1
Challenges and added value of measuring embodied variables in psychotherapy.
Front Psychiatry. 2022 Dec 16;13:1058507. doi: 10.3389/fpsyt.2022.1058507. eCollection 2022.

本文引用的文献

1
Nonverbal Behaviors "Speak" Relational Messages of Dominance, Trust, and Composure.
Front Psychol. 2021 Jan 26;12:624177. doi: 10.3389/fpsyg.2021.624177. eCollection 2021.
2
OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186. doi: 10.1109/TPAMI.2019.2929257. Epub 2020 Dec 4.
3
DeepBehavior: A Deep Learning Toolbox for Automated Analysis of Animal and Human Behavior Imaging Data.
Front Syst Neurosci. 2019 May 7;13:20. doi: 10.3389/fnsys.2019.00020. eCollection 2019.
4
Measuring nonverbal behavior in clinical interactions: A pragmatic guide.
Patient Educ Couns. 2018 Dec;101(12):2209-2218. doi: 10.1016/j.pec.2018.08.013. Epub 2018 Aug 15.
5
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
Nat Neurosci. 2018 Sep;21(9):1281-1289. doi: 10.1038/s41593-018-0209-y. Epub 2018 Aug 20.
6
Functional Smiles: Tools for Love, Sympathy, and War.
Psychol Sci. 2017 Sep;28(9):1259-1270. doi: 10.1177/0956797617706082. Epub 2017 Jul 25.
7
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
AMAB: automated measurement and analysis of body motion.
Behav Res Methods. 2014 Sep;46(3):625-33. doi: 10.3758/s13428-013-0398-y.
9
Automatic human interaction understanding: lessons from a multidisciplinary approach.
Front Hum Neurosci. 2012 Mar 20;6:57. doi: 10.3389/fnhum.2012.00057. eCollection 2012.
10
The Simulation of Smiles (SIMS) model: Embodied simulation and the meaning of facial expression.
Behav Brain Sci. 2010 Dec;33(6):417-33; discussion 433-80. doi: 10.1017/S0140525X10000865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验