1854521712 Bureau of Infectious Disease and Laboratory Sciences, Massachusetts Department of Public Health, Boston, MA, USA.
1242 Geospatial Research, Analysis, and Services Program (GRASP), Office of Innovation and Analytics, Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
Public Health Rep. 2021 Nov-Dec;136(6):765-773. doi: 10.1177/00333549211036750. Epub 2021 Aug 13.
Widespread SARS-CoV-2 testing is critical to identify infected people and implement public health action to interrupt transmission. With SARS-CoV-2 testing supplies and laboratory capacity now widely available in the United States, understanding the spatial heterogeneity of associations between social determinants and the use of SARS-CoV-2 testing is essential to improve testing availability in populations disproportionately affected by SARS-CoV-2.
We assessed positive and negative results of SARS-CoV-2 molecular tests conducted from February 1 through June 17, 2020, from the Massachusetts Virtual Epidemiologic Network, an integrated web-based surveillance and case management system in Massachusetts. Using geographically weighted regression and Moran's spatial autocorrelation tests, we quantified the associations between SARS-CoV-2 testing rates and 11 metrics of the Social Vulnerability Index in all 351 towns in Massachusetts.
Median SARS-CoV-2 testing rates decreased with increasing percentages of residents with limited English proficiency (median relative risk [interquartile range] = 0.96 [0.95-0.99]), residents aged ≥65 (0.97 [0.87-0.98]), residents without health insurance (0.96 [0.95-1.04], and people residing in crowded housing conditions (0.89 [0.80-0.94]). These associations differed spatially across Massachusetts, and localized models improved the explainable variation in SARS-CoV-2 testing rates by 8% to 12%.
Indicators of social vulnerability are associated with variations in SARS-CoV-2 testing rates. Accounting for the spatial heterogeneity in these associations may improve the ability to explain and address the SARS-CoV-2 pandemic at substate levels.
广泛开展 SARS-CoV-2 检测对于发现感染者并采取公共卫生措施阻断传播至关重要。目前美国 SARS-CoV-2 检测试剂和实验室能力已广泛普及,了解社会决定因素与 SARS-CoV-2 检测应用之间的空间异质性,对于改善受 SARS-CoV-2 影响较大人群的检测可及性至关重要。
我们评估了 2020 年 2 月 1 日至 6 月 17 日期间,通过马萨诸塞州虚拟流行病学网络(一个整合了网络监测和病例管理系统的马萨诸塞州系统)进行的 SARS-CoV-2 分子检测的阳性和阴性结果。利用地理加权回归和 Moran 空间自相关检验,我们量化了 SARS-CoV-2 检测率与马萨诸塞州 351 个城镇中社会脆弱性指数 11 项指标之间的关系。
SARS-CoV-2 检测率随着英语水平有限居民的比例增加而降低(中位数相对风险[四分位距] = 0.96[0.95-0.99])、年龄≥65 岁的居民(0.97[0.87-0.98])、无健康保险的居民(0.96[0.95-1.04])和居住在拥挤住房条件下的居民(0.89[0.80-0.94])。这些关联在马萨诸塞州具有空间差异,局部模型使 SARS-CoV-2 检测率的可解释变异提高了 8%至 12%。
社会脆弱性指标与 SARS-CoV-2 检测率的变化相关。考虑到这些关联的空间异质性,可能有助于在州以下层面解释和应对 SARS-CoV-2 大流行。