Suppr超能文献

识别登革热患者住院时间延长的预测因素和模型。

Identification of predictors and model for predicting prolonged length of stay in dengue patients.

机构信息

Department of Clinical Data Analytics, Max Super Specialty Hospital, 1, Press Enclave Road, Saket, New Delhi, 110017, India.

Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, Australia.

出版信息

Health Care Manag Sci. 2021 Dec;24(4):786-798. doi: 10.1007/s10729-021-09571-3. Epub 2021 Aug 14.

Abstract

PURPOSE

Our objective is to identify the predictive factors and predict hospital length of stay (LOS) in dengue patients, for efficient utilization of hospital resources.

METHODS

We collected 1360 medical patient records of confirmed dengue infection from 2012 to 2017 at Max group of hospitals in India. We applied two different data mining algorithms, logistic regression (LR) with elastic-net, and random forest to extract predictive factors and predict the LOS. We used an area under the curve (AUC), sensitivity, and specificity to evaluate the performance of the classifiers.

RESULTS

The classifiers performed well, with logistic regression (LR) with elastic-net providing an AUC score of 0.75 and random forest providing a score of 0.72. Out of 1148 patients, 364 (32%) patients had prolonged length of stay (LOS) (> 5 days) and overall hospitalization mean was 4.03 ± 2.44 days (median ± IQR). The highest number of dengue cases belonged to the age group of 10-20 years (21.1%) with a male predominance. Moreover, the study showed that blood transfusion, emergency admission, assisted ventilation, low haemoglobin, high total leucocyte count (TLC), low or high haematocrit, and low lymphocytes have a significant correlation with prolonged LOS.

CONCLUSION

Our findings demonstrated that the logistic regression with elastic-net was the best fit with an AUC of 0.75 and there is a significant association between LOS greater than five days and identified patient-specific variables. This method can identify the patients at highest risks and help focus time and resources.

摘要

目的

我们的目的是确定登革热患者的预测因素并预测其住院时间(LOS),以有效利用医院资源。

方法

我们收集了印度 Max 集团医院 2012 年至 2017 年间确诊的 1360 例登革热感染患者的医疗记录。我们应用了两种不同的数据挖掘算法,逻辑回归(LR)与弹性网和随机森林来提取预测因素并预测 LOS。我们使用曲线下面积(AUC)、灵敏度和特异性来评估分类器的性能。

结果

分类器表现良好,逻辑回归(LR)与弹性网的 AUC 评分为 0.75,随机森林的评分为 0.72。在 1148 例患者中,364 例(32%)患者的 LOS 延长(>5 天),总体住院平均时间为 4.03±2.44 天(中位数±IQR)。登革热病例数量最多的年龄组为 10-20 岁(21.1%),男性居多。此外,研究表明输血、紧急入院、辅助通气、低血红蛋白、高总白细胞计数(TLC)、低或高血细胞比容和低淋巴细胞计数与 LOS 延长有显著相关性。

结论

我们的研究结果表明,逻辑回归与弹性网的 AUC 最佳,为 0.75,并且 LOS 大于五天与确定的患者特定变量之间存在显著关联。这种方法可以识别出风险最高的患者,并有助于集中时间和资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e22d/8363490/8cc65aca06a5/10729_2021_9571_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验