Suppr超能文献

基于标注数据集的使用 YOLOv5 架构的精子细胞检测研究。

Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset.

机构信息

Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic.

Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.

出版信息

Genes (Basel). 2023 Feb 9;14(2):451. doi: 10.3390/genes14020451.

Abstract

Infertility has recently emerged as a severe medical problem. The essential elements in male infertility are sperm morphology, sperm motility, and sperm density. In order to analyze sperm motility, density, and morphology, laboratory experts do a semen analysis. However, it is simple to err when using a subjective interpretation based on laboratory observation. In this work, a computer-aided sperm count estimation approach is suggested to lessen the impact of experts in semen analysis. Object detection techniques concentrating on sperm motility estimate the number of active sperm in the semen. This study provides an overview of other techniques that we can compare. The Visem dataset from the Association for Computing Machinery was used to test the proposed strategy. We created a labelled dataset to prove that our network can detect sperms in images. The best not-super tuned result is mAP 72.15.

摘要

不育症最近成为一个严重的医学问题。男性不育的基本要素是精子形态、精子活力和精子密度。为了分析精子活力、密度和形态,实验室专家会进行精液分析。但是,基于实验室观察的主观解释很容易出错。在这项工作中,我们提出了一种计算机辅助的精子计数估计方法,以减轻专家在精液分析中的影响。专注于精子活力估计的目标检测技术来估计精液中活跃精子的数量。本研究提供了一个可以比较的其他技术的概述。我们使用计算机协会的 Visem 数据集来测试所提出的策略。我们创建了一个标记数据集,以证明我们的网络可以在图像中检测精子。最佳非调优结果是 mAP 72.15。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de06/9957213/83358f882ffd/genes-14-00451-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验